第六章样本及抽样分布

总体的三重特性:
统计量不包含未知参数
修正之后的样本方差: S 2 = 1 n − 1 ∑ i = 1 n ( X i − E ( X ) ) 2 S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-E(X))^2 S2=n11i=1n(XiE(X))2
注意:这里是 1 n − 1 \frac{1}{n-1} n11不是 1 n \frac{1}{n} n1
样本标准化: S = S 2 = 1 n − 1 ∑ i = 1 n ( X i − E ( X ) ) 2 S=\sqrt{S^2}=\sqrt{\frac{1}{n-1}\sum_{i=1}^n(X_i-E(X))^2} S=S2 =n11i=1n(XiE(X))2
k k k阶原点矩: A k = 1 n ∑ i = 1 n X i k A_k=\frac{1}{n}\sum_{i=1}^n X_i^k Ak=n1i=1nXik
设总体的均值是 μ \mu μ,总体的方差是 σ 2 \sigma^2 σ2,从总体中取 n n n个个体 X 1 , X 2 . . . . . . X n X_1,X_2......X_n X1,X2......Xn作为样本,则样本的均值 E ( X ‾ ) E(\overline{X}) E(X)= μ \mu μ,方差 D ( X ‾ ) = 1 n σ 2 D(\overline{X})=\frac{1}{n} \sigma^2 D(X)=n1σ2, E ( S 2 ) = σ 2 E(S^2)=\sigma^2 E(S2)=σ2,证明如下:
∑ i = 1 n ( X i − X ‾ ) 2 = ∑ i = 1 n [ ( X i − μ ) − ( X ‾ − μ ) ] 2 = ∑ i = 1 n [ ( X i − μ ) 2 − 2 ( X i − μ ) ( X ‾ − μ ) + ( X ‾ − μ ) 2 ] = ∑ i = 1 n ( X i − μ ) 2 − 2 ( X ‾ − μ ) ∑ i = 1 n ( X i − μ ) + ∑ i = 1 n ( X ‾ − μ ) 2 = ∑ i = 1 n ( X i − μ ) 2 − 2 n ( X ‾ − μ ) 2 + n ( X ‾ − μ ) 2 = ∑ i = 1 n ( X i − μ ) 2 − n ( X ‾ − μ ) 2 E ( S 2 ) = E [ 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 ] = 1 n − 1 E [ ∑ i = 1 n ( X i − μ ) 2 − n ( X ‾ − μ ) 2 ] = 1 n − 1 { E [ ∑ i = 1 n ( X i − μ ) 2 ] − n E [ ( X ‾ − μ ) 2 ] } = 1 n − 1 [ ∑ i = 1 n D ( X ) − n ∗ 1 n σ 2 ] = 1 n − 1 [ n D ( X ) − σ 2 ] = σ 2 \begin{aligned} \sum_{i=1}^n(X_i-\overline{X})^2 =&\sum_{i=1}^n[(X_i-\mu)-(\overline{X}-\mu)]^2\\ =&\sum_{i=1}^n[(X_i-\mu)^2-2(X_i-\mu)(\overline{X}-\mu)+(\overline{X}-\mu)^2]\\ =&\sum_{i=1}^n(X_i-\mu)^2-2(\overline{X}-\mu)\sum_{i=1}^n(X_i-\mu)+\sum_{i=1}^n(\overline{X}-\mu)^2\\ =&\sum_{i=1}^n(X_i-\mu)^2-2n(\overline{X}-\mu)^2+n(\overline{X}-\mu)^2\\ =&\sum_{i=1}^n(X_i-\mu)^2-n(\overline{X}-\mu)^2\\ E(S^2)=&E[\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2]\\ =&\frac{1}{n-1}E[ \sum_{i=1}^n(X_i-\mu)^2-n(\overline{X}-\mu)^2]\\ =&\frac{1}{n-1}\{E[ \sum_{i=1}^n(X_i-\mu)^2]-nE[(\overline{X}-\mu)^2]\}\\ =&\frac{1}{n-1}[\sum_{i=1}^n D(X)-n*\frac{1}{n}\sigma^2]\\ =&\frac{1}{n-1}[nD(X)-\sigma^2]\\ =&\sigma^2 \end{aligned} i=1n(XiX)2=====E(S2)======i=1n[(Xiμ)(Xμ)]2i=1n[(Xiμ)22(Xiμ)(Xμ)+(Xμ)2]i=1n(Xiμ)22(Xμ)i=1n(Xiμ)+i=1n(Xμ)2i=1n(Xiμ)22n(Xμ)2+n(Xμ)2i=1n(Xiμ)2n(Xμ)2E[n11i=1n(XiX)2]n11E[i=1n(Xiμ)2n(Xμ)2]n11{E[i=1n(Xiμ)2]nE[(Xμ)2]}n11[i=1nD(X)nn1σ2]n11[nD(X)σ2]σ2
重要分布:
χ \chi χ
X 1 , X 2 . . . . . . X n X_1,X_2......X_n X1,X2......Xn相互独立并服从标准正太分布,则平方和:
χ 2 = X 1 2 + X 2 2 + . . . . . . + X n 2 \chi^2=X_1^2+X_2^2+......+X_n^2 χ2=X12+X22+......+Xn2
服从的分布称为自由度为n的 χ 2 ( n ) \chi^2(n) χ2(n)分布
性质:
X − χ 2 ( m ) , Y − χ 2 ( n ) X-\chi^2(m),Y-\chi^2(n) Xχ2(m),Yχ2(n) X Y XY XY相互独立。
则: X + Y − χ 2 ( m + n ) X+Y-\chi^2(m+n) X+Yχ2(m+n)
t : t: t:
α \alpha α分位点:
对于给定的 α ( 0 < α < 1 ) \alpha(0<\alpha<1) α(0<α<1)称满足条件: P { t > t ( n ) } = α P\{t>t(n)\}=\alpha P{t>t(n)}=α
另外: t t t函数关于 y y y轴对称
X X X为标准正太分布 Y Y Y为自由度为 n n n χ \chi χ分布时 X Y n \frac{X}{\sqrt{Y}}\sqrt{n} Y Xn 服从的分布是自由度为 n n n t − t- t分布记做 T − t ( n ) T-t(n) Tt(n)
F : F: F:
X − χ 2 ( n 1 ) , Y − χ 2 ( n 2 ) X-\chi^2(n_1),Y-\chi^2(n_2) Xχ2(n1),Yχ2(n2) X Y XY XY相互独立。
F = n 2 X n 1 Y F=\frac{n_2X}{n_1Y} F=n1Yn2X
n 1 n_1 n1称为第一自由度 n 2 n_2 n2称为第二自由度。记做 F − F ( n 1 , n 2 ) F-F(n_1,n_2) FF(n1,n2)

矩估计法:

E X = X ‾ E X 2 = D ( X ) + E ( X ) 2 \begin{aligned} EX&=\overline{X}\\ EX^2&=D(X)+E(X)^2 \end{aligned} EXEX2=X=D(X)+E(X)2
无偏估计:
样本的均值和方差是无偏估计,标准差不是无偏估计
无偏估计的有效性:方差越小越好(最小方差无偏估计)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值