Matlab求矩阵的逆(三种方法)

Matlab求矩阵的逆(三种方法)

说明:若所求矩阵为非奇异矩阵(可逆矩阵),则可以精确求得其逆矩阵;若所求矩阵为奇异矩阵,则所求出的逆矩阵是近似的(不精确)。

下面以矩阵A为例。

  • inv()方法
  • A − 1 A^{-1} A1方法
  • eye()/A方法

1.inv()方法

A=rand(3,3) //参数分别为矩阵行数和列数
inv(A) //矩阵的逆

示例:

>> A=rand(3,3) 

A =

    0.8147    0.9134    0.2785
    0.9058    0.6324    0.5469
    0.1270    0.0975    0.9575

>> inv(A)

ans =

   -1.9958    3.0630   -1.1690
    2.8839   -2.6919    0.6987
   -0.0291   -0.1320    1.1282
   

2. A − 1 A^{-1} A1方法

A=rand(3,3) 
A^-1 

示例:

>> A=rand(3,3)

A =

 0.6787    0.3922    0.7060
 0.7577    0.6555    0.0318
 0.7431    0.1712    0.2769

>> A^-1

ans =

-0.8553   -0.0595    2.1875
 0.9044    1.6357   -2.4939
 1.7361   -0.8515   -0.7174

3.eye()/A方法

  • eye(N):返回N*N的单位矩阵
  • eye(M,N):返回M*N的单位矩阵
A=rand(3,3)
eye(3,3)/A   //即E/A

示例:

>> A=rand(3,3)

A =

    0.0462    0.6948    0.0344
    0.0971    0.3171    0.4387
    0.8235    0.9502    0.3816

>> eye(3,3)/A

ans =

   -1.4378   -1.1292    1.4282
    1.5754   -0.0522   -0.0822
   -0.8203    2.5670   -0.2568
### Matlab矩阵方法Matlab中,可以通过多种方式来计算矩阵。主要的方式有两种:一种是通过`inv()`函数直接解;另一种则是利用矩阵幂运算符`^-1`。 对于给定的一个方阵\( a \),如果该矩阵是非奇异(即可),那么可以在命令行窗口输入`a=[1 2 3;4 5 6;7 8 9];`创建一个名为 \( a \) 的三阶方阵[^2]。接着可以采用下面两种方法之一来进行: #### 使用 `inv()` 函数 可以直接调用内置的`inv()`函数来获取矩阵。具体做法是在命令行窗口中输入`inv(a)`并按下回车键,这将会返回矩阵 \( a \)逆矩阵。 ```matlab % 创建一个示例矩阵 a = [1 2 3; 4 5 6; 7 8 9]; % 计算其逆矩阵 inverse_a = inv(a); disp(inverse_a); ``` 需要注意的是,只有当矩阵不是奇异的时候才能成功得到它的逆矩阵。因此,在实际应用之前应该先确认所使用的矩阵满足这一前提条件。 #### 利用矩阵幂运算符 `-1` 除了上述提到的`inv()`函数外,还可以使用更简洁的方式来表示矩阵——即写成`a^-1`的形式。这种方式同样适用于非奇异矩阵,并且能够达到相同的效果。 ```matlab % 同样以上面定义好的矩阵为例 alternative_inverse_a = a^-1; disp(alternative_inverse_a); ``` 这两种方法都可以有效地帮助用户完成对指定矩阵的任务。不过值得注意的一点是,由于浮点数精度的原因,有时即使理论上两个结果应该是完全相同的,但在显示上可能会存在细微差异。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值