【2022超详细版】Win10安装cuda(10.1、11.7)+cuDNN(7.6.5、8.5.0)+tensorflow(gpu版)+pytorch(gpu版)

目录

1.查看显卡支持的CUDA版本

 查看版本

2.安装CUDA

官网

10.1版本

1. 下载地址

2. 安装过程

3. 将CUDA的路径添加到环境变量中

11.7版本与10.1有区别的部分

1. 安装位置

2. 默认添加环境变量

检验安装

 卸载CUDA

3.下载cuDNN

CUDA10.1版本+cuDNN7.6.5

CUDA11.7版本+cuDNN8.5.0

检验是否安装成功

4.安装tensorflow_gpu

1. 版本匹配问题,这里使用python3.7

2. 安装命令

3. 运行报错及解决方案

5.安装pytorch_gpu

查看版本匹配

10.1

1. pip安装

2. conda安装

11.7


1.查看显卡支持的CUDA版本

 

 查看版本

Release Notes :: CUDA Toolkit Documentation (nvidia.com)https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

 根据数值选择相应cuda版本

2.安装CUDA

官网

        从NVIDIA官方网站上下载适合你系统的CUDA Toolkit安装包。

CUDA Toolkit Archive | NVIDIA Developerhttps://developer.nvidia.com/cuda-toolkit-archive

10.1版本可全装其他盘,11.7版本会有2个多G固定装在C盘

10.1版本

1. 下载地址

CUDA Toolkit 10.1 original Archive | NVIDIA Developerhttps://developer.nvidia.com/cuda-10.1-download-archive-base?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal

2. 安装过程

        根据CUDA Toolkit的安装向导,选择适合你的选项进行安装,可以根据你的需求进行自定义安装。

  • 双击.exe进行安装

  • 临时文件,安装后自动清除

 

默认C盘,建议更改到D盘如图所示目录,便于后续添加环境变量

3. 将CUDA的路径添加到环境变量中

        安装完成,需要将CUDA的路径添加到你的系统环境变量中。在Windows操作系统上,可以通过右键点击"计算机"(或"此电脑")-> 属性 -> 高级系统设置 -> 环境变量,在系统变量中找到"Path"变量并添加CUDA的安装路径。

        新建如下环境变量,自己根据实际情况进行修改

D:\CUDA\NVIDIA GPU Computing Toolkit\CUDA\v10.1\lib\x64

D:\CUDA\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include

D:\CUDA\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\CUPT\lib64

D:\CUDA\NVIDIA Corporation\CUDA Samples\v10.1\bin\win64

D:\CUDA\NVIDIA Corporation\CUDA Samples\v10.1\common\lib\x64

(可选择新建,亦可选择“浏览”找到相应文件夹)

11.7版本与10.1有区别的部分

        11.7安装过程可参照前文,这里仅介绍有区别的部分

1. 安装位置

        缺NVIDIA Corporation的(2个多G)固定装在C盘

2. 默认添加环境变量

        不需要手动添加环境变量

检验安装

nvcc -V
set cuda

 卸载CUDA

        卸载框选的4个:

3.下载cuDNN

CUDA10.1版本+cuDNN7.6.5

  1. 官网下载(需要先注册)cuDNN Archive | NVIDIA Developerhttps://developer.nvidia.com/rdp/cudnn-archive

        下载后,解压,然后将binincludelib文件夹下的文件直接复制到CUDA安装目录中的对应位置。

CUDA11.7版本+cuDNN8.5.0

检验是否安装成功

bandwidthTest.exe

        "bandwidthTest.exe"用于测试CUDA设备的内存带宽。运行此可执行文件将显示出设备的内存读取和写入带宽信息,以及带宽测试的结果。这对于评估设备的性能和了解其内存访问速度非常有用。

deviceQuery.exe

        "deviceQuery.exe"用于查询CUDA设备的属性和功能。运行此可执行文件将显示出设备的名称、计算能力、CUDA核心数量、内存总量、内存时钟频率等信息,以及设备支持的CUDA功能和特性。这对于了解设备的硬件规格和功能非常有用。

4.安装tensorflow_gpu

1. 版本匹配问题,这里使用python3.7

python -m site

        显示Python解释器搜索模块的目录列表,以及Python的安装信息和配置文件位置。

2. 安装命令

conda install tensorflow-gpu==2.3.0

亦可使用pip命令

3. 运行报错及解决方案

报错

AttributeError: module 'tensorflow.python.framework.ops' has no attribute '_TensorLike'

报错

2022-11-22 19:57:04.351092: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations:  AVX AVX2

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.

2022-11-22 19:57:04.351092: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations:  AVX AVX2

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.

        这个报错信息表明你的TensorFlow二进制文件是经过优化的,使用了oneAPI Deep Neural Network Library (oneDNN)来在性能关键的操作中使用特定的CPU指令,包括AVX和AVX2。 然而,这个优化只适用于一些性能关键的操作,对于其他操作可能并没有启用这些指令。如果你希望在其他操作中也启用这些指令,你需要重新编译TensorFlow,并使用相应的编译器标志来启用AVX和AVX2指令集。

         AVX(Advanced Vector Extensions-Intel® AVX) 是intel 优化CPU用于浮点计算的技术,如果有GPU了,其实不用考虑该警告讯息。 不过, 不管怎么说, 如果不愿意看到该警告讯息, 可以加上如下2行代码:

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

       该代码是用来设置TensorFlow的日志级别的。通过设置os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2',将日志级别设置为最低级别,即只显示错误信息,不显示其他日志信息。这可以帮助减少不必要的日志输出,使程序的运行输出更加简洁。

5.安装pytorch_gpu

查看版本匹配

Previous PyTorch Versions | PyTorchhttps://pytorch.org/get-started/previous-versions/

10.1

1. pip安装

pip install torch==1.8.1+cu101 torchvision==0.9.1+cu101 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

2. conda安装

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch

11.7

conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia

1. 下载CUDA 11.7cuDNN库 首先需要下载CUDA 11.7cuDNN库。官网下载地址如下: - CUDA 11.7:https://developer.nvidia.com/cuda-117-download-archive - cuDNN:https://developer.nvidia.com/rdp/cudnn-download 根据操作系统本和CUDA本选择对应的下载链接。 2. 安装CUDA 11.7 下载好CUDA 11.7后,双击运行安装程序,按照提示进行安装。在安装过程中,需要注意以下几点: - 选择安装路径:默认情况下,CUDA安装到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7路径下。如果需要更改安装路径,可以在安装程序中进行更改。 - 安装选项:如果只需要安装CUDA Toolkit,可以选择“Custom”选项,然后取消勾选其他组件。如果需要安装所有组件,可以选择“Express”选项。 - 安装完成后,需要将CUDA的bin目录添加到系统环境变量中,这样才能在命令行中使用CUDA。 3. 安装cuDNN 下载好cuDNN后,将压缩包解压到任意目录下。然后将解压后的目录中的文件复制到CUDA安装目录下,具体操作如下: - 打开解压后的目录,找到与CUDA本对应的文件夹(例如:cuda-11.7)。 - 将该文件夹下的bin、include和lib文件夹分别复制到CUDA安装目录下的对应文件夹中。例如:将bin文件夹下的所有文件复制到CUDA安装目录下的bin文件夹中。 4. 验证安装 安装完成后,需要验证CUDAcuDNN是否安装成功。可以使用以下命令进行验证: - 在命令行中输入nvcc -V命令,查看CUDA本信息。 - 在命令行中输入python,然后输入import tensorflow as tf和import torch命令,查看是否能够成功导入TensorFlowPyTorch。 如果以上验证都能够顺利通过,说明CUDAcuDNN已经安装成功。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QomolangmaH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值