TensorFlow学习笔记(10)TF Hub 迁移学习、回归模型与Early_stop

        上一篇笔记记录了如何利用字母数值对应函数和规整函数处理文本,使神经网络能够接受输入,进而对文本进行分类的方法。本篇讲述一下如何在文本分类的基础上进行迁移学习、回归模型构建与早期停止函数。

利用TF Hub库的迁移学习

        使用的数据集仍旧是TensorFlow官网提供的IMDB数据集,主要使用.keras包和tensorflow_hub(一个用于在一行代码中从TFHub加载预训练模型的库)。TFHub是tensorflow官网提供的一个数据库,里面存储了已经预训练好的模型参数。在训练模型时,可以从TFHub中加载预训练模型的参数信息,再进一步对模型进行训练,进而减少训练时间、提高精度。

import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_datasets as tfds
import os
import matplotlib.pyplot as plt

train_data, validation_data, test_data = tfds.load(
    name="imdb_reviews",
    split=('train[:60%]', 'train[60%:]', 'test'),
    as_supervised=True)
# 在加载数据的同时,指明加载数据包的名字,分割比例
# 训练集的前60%指明为训练数据,后40%指明为验证数据,整个测试集为测试数据
# 为真表示按行将数据处理为特征和标签一一对应的形式,为假表示将数据按照原始的字典形式处理

# train_examples_batch, train_labels_batch = next(iter(train_data.batch(10)))
# print(train_labels_batch,train_examples_batch)
# next 返回迭代器的下一个项目,iter生成迭代器
# list、tuple等都是可迭代对象,我们可以通过iter()函数获取这些可迭代对象的迭代器。
# 对获取到的迭代器不断使用next()函数来获取下⼀条数据。
# 使用next和iter迭代从训练数据中取出10个数据查看,print打印张量形状和具体内容

embedding = "https://hub.tensorflow.google.cn/google/nnlm-en-dim50/2"
# 从tensorflow的指定网站获取预训练文本嵌入向量模型
hub_layer = hub.KerasLayer(embedding,  input_shape=[], dtype=tf.string, trainable=True)
# print(hub_layer(train_examples_batch[:10]))
#hub.KerasLayer() 从指定url获取训练好的对象转换为Keras的layer,而不需要运行原始的网络结构构建代码

# 搭建sequential结构
model = tf.keras.Sequential()
# 添加hub_layer层
model.add(hub_layer)
model.add(tf.keras.layers.Dense(16, activation='relu'))
# 添加全连接层
model.add(tf.keras.layers.Dense(16, activation='relu'))
# 全连接 输出层
model.add(tf.keras.layers.Dense(1))

#配置优化器
model.compile(optimizer='adam',
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=['accuracy'])
# 使用history存放fit的训练内容
history = model.fit(train_data.shuffle(10000).batch(512),
                    epochs=10,
                    validation_data=validation_data.batch(512),
                    verbose=1)
# 打印网络结构
model.summary()
# evaluate函数评估结果,将测试集数据放入网络中测试

history_dict=history.history
acc=history_dict['accuracy']
val_acc=history_dict['val_accuracy']
loss=history_dict['loss']
val_loss=history_dict['val_loss']

epochs=range(1,len(acc)+1)

# plt.plot(x, y, format_string, **kwargs)
# x:x轴数据,列表或数组,可选
# y:y轴数据,列表或数组
# format_string:控制曲线的格式字符串,可选,由颜色字符、风格字符和标记字符组成
# **kwargs,第二组或更多,(x,y,format_string)
plt.plot(epochs,loss,'bo',label='Training loss')
plt.plot(epochs,val_loss,'b',label='Training val_loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
# 设置图例,又三个参数,可以设置展示的图是否有边框,背景,和图的位置,字体大小等
plt.show()


plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()

# 用evaluate()检测训练结果
results=model.evaluate(test_data.batch(512),verbose=2)
# 等于1 输出进度条记录;等于2,直接输出结果
# 此处batch是元组,并不是列表。若设置为列表则报错
for name, value in zip(model.metrics_names, results):
    print("%s: %.3f" % (name, value))
# zip() 将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
# 如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表

回归模型与早期停止函数

        在我们训练模型的过程时,有时会因为数据不是特别合适,造成验证损失值越来越大,即训练模型恶化。此时可以采取早期停止训练函数及时停止训练,从而让参数保证模型的泛化能力。前面的笔记中有提及,早期停止训练就是防止过拟合的方法之一。

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
# 在matplotlib基础上补充的绘图模块
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

dataset_path = keras.utils.get_file("auto-mpg.data", "http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data")
# (文件名,文件加载地址) 从指定文件加载地址获取文件名对应的文件
column_names = ['MPG','Cylinders','Displacement','Horsepower','Weight',
                'Acceleration', 'Model Year', 'Origin']
# 列名字
raw_dataset = pd.read_csv(dataset_path,
                          names=column_names,
                          na_values = "?",
                          # 缺失值用?表示
                          comment='\t',
                          # 指示不应分析行的其余部分。如果在一行的开头找到该行,则将完全忽略该行
                          sep=" ",
                          # 表示分隔符
                          skipinitialspace=True)
                          # 在定界符后跳过空格
# 未经处理的数据,利用pandas读取CSV文件(文件路径,列名字,。。。)
dataset = raw_dataset.copy()
# 复制raw_dataset的数据和结构,赋给dataset
print(dataset.tail())    #打印数据
dataset.isna().sum()   #检测缺失值并统计
dataset = dataset.dropna()   #找到缺失值并删除所在的行和列
origin = dataset.pop('Origin')   #将其转换为独热码的形式
# Origin列表示汽车的产地,分别用1,2,3存储。但是产地没有大小之分,所以用独热编码更合适
dataset['USA'] = (origin == 1)*1.0
dataset['Europe'] = (origin == 2)*1.0
dataset['Japan'] = (origin == 3)*1.0
# print(dataset.tail())

train_dataset = dataset.sample(frac=0.8,random_state=0)   #随机选取行和列
test_dataset = dataset.drop(train_dataset.index)   #剔除带有训练集索引的部分数据

sns.pairplot(train_dataset[["MPG", "Cylinders", "Displacement", "Weight"]], diag_kind="kde")
# sns用来展示两两特征之间的关系
plt.show()
# 必须用plt.show让函数图显示

# 查看总体的数据统计
train_stats = train_dataset.describe()
# 返回数据的波动及变化
train_stats.pop("MPG")
train_stats = train_stats.transpose()
# transpose   调换矩阵行列的索引值,类似于求转置矩阵
print(train_stats)

train_labels = train_dataset.pop('MPG')
test_labels = test_dataset.pop('MPG')

# 数据规范化
def norm(x):
  return (x - train_stats['mean']) / train_stats['std']
normed_train_data = norm(train_dataset)
normed_test_data = norm(test_dataset)

# 定义了一个创建神经网络模型的函数
def build_model():
  model = keras.Sequential([
    layers.Dense(64, activation='relu', input_shape=[len(train_dataset.keys())]),
    layers.Dense(64, activation='relu'),
    layers.Dense(1)
  ])

  optimizer = tf.keras.optimizers.RMSprop(0.001)

  model.compile(loss='mse',
                optimizer=optimizer,
                metrics=['mae', 'mse'])
  return model

#此处第一次建立模型
# model = build_model()
# model.summary()

# 通过为每个完成的时期打印一个点来显示训练进度
class PrintDot(keras.callbacks.Callback):
  def on_epoch_end(self, epoch, logs):
    if epoch % 100 == 0: print('')
    print('.', end='')

EPOCHS = 1000

'''
history = model.fit(
  normed_train_data, train_labels,
  epochs=EPOCHS, validation_split = 0.2, verbose=0,
  callbacks=[PrintDot()])

hist = pd.DataFrame(history.history)
# dataframe   pandas的表格型数据结构
hist['epoch'] = history.epoch
# print(hist.tail())
'''
def plot_history(history):
    hist = pd.DataFrame(history.history)
    hist['epoch'] = history.epoch

    plt.figure()
    plt.xlabel('Epoch')
    plt.ylabel('Mean Abs Error [MPG]')
    plt.plot(hist['epoch'], hist['mae'],
            label='Train Error')
    plt.plot(hist['epoch'], hist['val_mae'],
            label = 'Val Error')
    plt.ylim([0,5])
    plt.legend()
    plt.show()

    plt.figure()
    plt.xlabel('Epoch')
    plt.ylabel('Mean Square Error [$MPG^2$]')
    plt.plot(hist['epoch'], hist['mse'],
            label='Train Error')
    plt.plot(hist['epoch'], hist['val_mse'],
            label = 'Val Error')
    plt.ylim([0,20])
    plt.legend()
    plt.show()

# 调用函数显示第一次模型的训练结果
# plot_history(history)

# 第一次模型结果恶化,采用早期停止函数避免过拟合,使训练效果更好
model=build_model()
# patience 值用来检查改进 epochs 的数量
early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)
# 早期停止函数,监测值为验证损失的大小
history = model.fit(normed_train_data, train_labels, epochs=EPOCHS,
                    validation_split = 0.2, verbose=0, callbacks=[early_stop, PrintDot()])
# 在训练过程中不断调用早期停止函数和打印点函数,时刻监视验证损失大小并提示进程
plot_history(history)

loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=2)

print("Testing set Mean Abs Error: {:5.2f} MPG".format(mae))

test_predictions = model.predict(normed_test_data).flatten()
# faltten将predict结果拉直,形成一维数组

plt.scatter(test_labels, test_predictions)

plt.xlabel('True Values [MPG]')
plt.ylabel('Predictions [MPG]')
plt.axis('equal')
# xy轴刻度等长
plt.axis('square')
# 作图为正方形
plt.xlim([0,plt.xlim()[1]])
plt.ylim([0,plt.ylim()[1]])
_ = plt.plot([-100, 100], [-100, 100])
plt.show()

error = test_predictions - test_labels
plt.hist(error, bins = 25)
# 直方图,参数表示数据来源和直方的柱数
plt.xlabel("Prediction Error [MPG]")
_ = plt.ylabel("Count")
plt.show()
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
                《人工智能:深度学习入门到精通实战》课程主要就人工智能领域相关的深度学习基础、深度学习计算、卷积神经网络+经典网络、循环神经网络+RNN进阶、优化算法、计算机视觉和自然语言处理等,配套实战案例与项目全部基于真实数据集与实际任务展开,结合深度学习框架进行建模实战。                由浅入深,每一个理论搭配一个实验,引领学员浸泡式逐步掌握各项技能和实战项目,且侧重技能不同,学员的知识体系会更加全面课程大纲:第一章:深度学习基础-深度学习简介01.1-前置知识01.2-传统编程与数据编程01.3-深度学习起源01.4-深度学习崛起与发展01.5-深度学习成功案例01.6-深度学习特点 第二章:深度学习基础-Python基础02.1-PyTorch介绍与环境配置02.2-数据操作与创建Tensor02.3-算术操作、索引与改变形状02.4-线性代数、广播机制与内存开销02.5-Tensor和NumPy相互转换与Tensor on GPU02.6-实验01-创建和使用Tensor-102.7-实验01-创建和使用Tensor-202.8-梯度下降02.9-实验02-梯度下降-102.10-实验02-梯度下降-202.11-自动求梯度概念02.12-自动求梯度实例02.13-实验03-自动求梯度-102.14-实验03-自动求梯度-2 第三章:深度学习基础-线性回归03.1-线性回归讲解03.2-线性回归实例03.3-实验04-从零实现线性回归-103.4-实验04-从零实现线性回归-203.5-实验05-线性回归的简洁实现-103.6-实验05-线性回归的简洁实现-2 第四章:深度学习基础-softmax回归04.1-softmax回归04.2-实验06-FashionMNIST04.3-实验07-从零实现Softmax回归-104.4-实验07-从零实现Softmax回归-204.5-实验08-softmax回归的简洁实现 第五章:深度学习基础-多层感知机05.1-感知机05.2-多层感知机05.3-多层感知机与神经网络05.4-激活函数05.5-正向传播05.6-反向传播05.7-正向传播和反向传播05.8-批大小05.9-实验09-从零实现MLP05.10-实验10-MLP的简洁实现 第六章:深度学习基础-模型选择、欠拟合和过拟合06.1-训练误差和泛化误差06.2-模型选择06.3-欠拟合和过拟合06.4-权重衰减06.5-丢弃法06.6-实验11-多项式函数拟合实验06.7-实验12-高维线性回归实验-106.8-实验12-高维线性回归实验-206.9-实验13-Dropout 第七章:深度学习基础-数值稳定性和模型初始化07.1-数值稳定性和模型初始化-107.2-数值稳定性和模型初始化-207.3-实验14-房价预测案例-107.4-实验14-房价预测案例-207.5-实验14-房价预测案例-3 第八章:深度学习计算-模型构造08.1-模型构造-108.2-模型构造-208.3-模型构造-308.4-实验15-模型构造-108.5-实验15-模型构造-2 第九章:深度学习计算-模型参数的访问、初始化和共享09.1-模型参数的访问09.2-模型参数初始化和共享09.3-实验16-模型参数-109.4-实验16-模型参数-2 第十章:深度学习计算-自定义层与读取和储存10.1-不含模型参数的自定义层10.2-含模型参数的自定义层10.3-实验17-自定义层10.4-读取和储存10.5-GPU计算10.6-实验18-读取和储存  第十一章:卷积神经网络11.01-卷积神经网络11.02-卷积神经网络的组成层11.03-图像分类的局限性11.04-二维卷积层与卷积层11.05-卷积在图像中的直观作用11.06-实验19-二维卷积层11.07-填充与步幅11.08-卷积过程11.09-卷积层参数-111.10-卷积层参数-211.11-实验20-Pad和Stride11.12-多输入和输出通道11.13-实验21-多通道11.14-池化层11.15-实验22-池化层 第十二章:经典网络12.01-卷积神经网络12.02-实验23-LeNet模型12.03-深度卷积神经网络12.04-实验24-AlexNet模型12.05-使用重复元素的网络12.06-实验25-VGG模型12.07-网络中的网络12.08-实验26-NiN模型12.09-含并行连接的网络12.10-实验27-GoogLeNet模型12.11-批量归一化-112.12-批量归一化-212.13-实验28-批量归一化12.14-残差网络12.15-实验29-残差网络12.16-稠密连接网络12.17-实验30-稠密连接网络 第十三章:循环神经网络13.01-语言模型和计算13.02-n元语法13.03-RNN和RNNs13.04-标准RNN向前输出流程和语言模型应用13.05-vector-to-sequence结构13.06-实验31-语言模型数据集-113.07-实验31-语言模型数据集-213.08-实验32-从零实现循环神经网络-113.09-实验32-从零实现循环神经网络-213.10-实验32-从零实现循环神经网络-313.11-实验32-从零实现循环神经网络-413.12-实验33-简洁实现循环神经网络-113.13-实验33-简洁实现循环神经网络-2 第十四章:RNN进阶14.01-通过时间反向传播-114.02-通过时间反向传播-214.03-长短期记忆-114.04-长短期记忆-214.05-实验34-长短期记忆网络-114.06-实验34-长短期记忆网络-214.07-门控循环单元14.08-RNN扩展模型14.09-实验35-门控循环单元 第十五章:优化算法15.01-优化与深度学习15.02-局部最小值和鞍点15.03-提高深度学习的泛化能力15.04-实验36-小批量梯度下降-115.05-实验36-小批量梯度下降-215.06-动量法-115.07-动量法-215.08-实验37-动量法15.09-AdaGrad算法与特点15.10-实验38-AdaGrad算法15.11-RMSrop算法15.12-实验39-RMSProp算法15.13-AdaDelta算法15.14-实验40-AdaDelta算法15.15-Adam算法15.16-实验41-Adam算法15.17-不用二阶优化讲解与超参数 第十六章:计算机视觉16.01-图像增广与挑战16.02-翻转、裁剪、变化颜色与叠加16.03-实验42-图像增广-116.04-实验42-图像增广-216.05-微调16.06-迁移学习16.07-实验43-微调-116.08-实验43-微调-216.09-目标检测16.10-边界框16.11-实验44-边界框16.12-锚框与生成多个锚框16.13-交并比16.14-实验45-生成锚框-116.15-实验45-生成锚框-216.17-标注训练集的锚框-116.18-标注训练集的锚框-216.19-实验46-标注训练集的锚框-116.20-实验46-标注训练集的锚框-216.21-实验46-标注训练集的锚框-316.22-输出预测边界框16.23-实验47-输出预测边界框-116.24-实验47-输出预测边界框-216.25-多尺度目标检测16.26-实验48-多尺度目标检测16.27-目标检测算法分类16.28-SSD与模型设计16.29-预测层16.30-损失函数16.31-SSD预测16.32-实验49-目标检测数据集16.33-实验50-SSD目标检测-116.34-实验50-SSD目标检测-216.35-实验50-SSD目标检测-316.36-实验50-SSD目标检测-416.37-实验50-SSD目标检测-516.38-实验50-SSD目标检测-6 第十七章:自然语言处理17.01-词嵌入和词向量17.02-神经网络模型17.03-跳字模型17.04-训练跳字模型17.05-连续词袋模型17.06-负采样17.07-层序softmax17.08-子词嵌入17.09-Fasttext模型17.10-全局向量的词嵌入17.11-实验51-word2vec之数据预处理-117.12-实验51-word2vec之数据预处理-217.13-实验52-word2vec之负采样-117.14-实验52-word2vec之负采样-217.15-实验53-word2vec之模型构建-117.16-实验53-word2vec之模型构建-217.17-实验54-求近义词和类比词-117.18-实验54-求近义词和类比词-217.19-实验55-文本情感分类RNN-117.20-实验55-文本情感分类RNN-217.21-实验55-文本情感分类RNN-317.22-实验55-文本情感分类RNN-417.23-TextCNN17.24-TextCNN流程17.25-实验56-文本情感分类textCNN-117.26-实验56-文本情感分类textCNN-217.27-Seq2Seq的历史与网络架构17.28-Seq2Seq的应用与存在的问题17.29-Attention机制与Bucket机制17.30-实验57-机器翻译之模型构建-117.31-实验57-机器翻译之模型构建-217.32-实验57-机器翻译之模型构建-317.33-实验58-机器翻译之训练评估-117.34-实验58-机器翻译之训练评估-217.35-实验58-机器翻译之训练评估-3
在神经网络训练完成后,我们可以使用模型对新的输入数据进行预测。以下是使用 TensorFlow 进行简单神经网络训练和测试的示例代码: ```python import tensorflow as tf # 定义输入数据 x = tf.placeholder(tf.float32, [None, input_size]) # 定义模型参数 W = tf.Variable(tf.zeros([input_size, num_classes])) b = tf.Variable(tf.zeros([num_classes])) # 定义模型 y = tf.nn.softmax(tf.matmul(x, W) + b) # 定义损失函数 y_ = tf.placeholder(tf.float32, [None, num_classes]) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) # 定义优化器 train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy) # 训练模型 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(num_iterations): batch_xs, batch_ys = get_next_batch(train_data, train_labels, batch_size) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # 测试模型 correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print("Accuracy: ", sess.run(accuracy, feed_dict={x: test_data, y_: test_labels})) ``` 在训练完成后,我们可以使用 `sess.run()` 函数来获取模型的输出。例如,如果我们想要对一个新的数据样本进行预测,我们可以将其传递给 `sess.run()` 函数的 `feed_dict` 参数,并获取模型的输出 `y`。下面是一个简单的示例: ```python # 定义要预测的数据 new_data = [[5.1, 3.5, 1.4, 0.2]] # 获取预测结果 prediction = sess.run(y, feed_dict={x: new_data}) # 打印预测结果 print(prediction) ``` 在上面的代码中,我们将 `new_data` 作为输入数据传递给模型,并使用 `sess.run()` 函数获取模型的输出 `y`。然后,我们打印预测结果即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值