Keras深度学习实战(10)——迁移学习详解

本文介绍了迁移学习的基本原理和ImageNet数据集,通过使用预训练的VGG16模型进行性别分类。在实践中,通过冻结VGG16的权重并微调模型,实现了在少量样本上达到高准确率的性别分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

《卷积神经网络的局限性》中,我们看到从零开始训练卷积神经网络 (Convolutional Neural Network, CNN) 模型时,可能会遇到以下一些问题:

  • 训练数据集中图像数量不足,使得模型难以学习
  • 当图像尺寸很大时,卷积可能无法学习图像中的所有特征

第一个问题可以通过对增加数据集中的数据量来解决(即数据增强),第二个问题可以通过在更深的网络架构上训练更多的 epoch 来解决(即增加训练量)。尽管我们能够通过执行所有这些操作来解决上述问题,但通常情况下,我们可能无法获取更多的训练数据。在这种情况下,使用预先训练完成的模型进行迁移学习将能够快速解决上述问题。

1. 迁移学习

1.1 迁移学习原理

迁移学习 (Transfer Learning) 是机器学习中的一个重要研究方向,研究如何将在任务 A 上学到的知识迁移至任务 B,例如任务 A 为猫狗分类,任务

迁移学习是将在特定领域的一个任务中获得的知识迁移到另一个相似领域的相关项目的过程。在深度学习中,迁移学习通常是指使用在另一个问题中预训练的模型作为起点来解决当前问题。Python中有一些常见的问题和故障,与迁移学习相关的一些问题和故障包括: 1. 模型选择:在迁移学习中,选择适合当前问题的预训练模型是一个重要的步骤。可能会遇到选择不适合的模型或者没有合适的预训练模型的情况。 2. 数据集适应性:迁移学习中的一个关键问题是将预训练模型适应到当前问题的数据集上。如果目标数据集与预训练模型的数据集差异较大,可能需要进行一些调整,比如调整输入数据的尺寸或者进行数据增强。 3. 过拟合问题:在迁移学习中,由于预训练模型已经具有较好的泛化能力,可能会遇到过拟合的问题。可以通过添加正则化项或者调整模型的复杂度来解决过拟合问题。 4. 微调策略:在迁移学习中,微调是指在预训练模型的基础上进行一些小的调整来适应当前问题。可能会遇到微调的策略选择不当或者微调过程中出现的问题。 5. 训练不稳定:在迁移学习中,训练过程可能出现不稳定的情况,比如训练损失无法收敛或者训练过程中出现梯度消失或梯度爆炸等问题。可以通过调整学习率、使用合适的优化算法或者增加正则化项来解决训练不稳定的问题。 以上是一些与Python迁移学习相关的常见问题和故障。在实际应用中,可能会遇到其他问题和故障,需要根据具体情况进行分析和解决。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Python人工智能项目开发实战_利用迁移学习检测人眼糖尿病视网膜病变_编程案例实例详解课程教程.pdf](https://download.csdn.net/download/yingcai111/85750459)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Python深度学习10——Keras实现迁移学习](https://blog.csdn.net/weixin_46277779/article/details/125689965)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值