数据集的格式可以参考我的:
classes.txt和下面的cache都是我训练后自动生成的,不用管
images和labels文件夹下train-train,val-val,图像文件和标签文件需要一一对应好,正常情况下最开始我们创建的labels只是个空壳文件夹,里面是没有数据的,这一大串文件夹里面最先只有images下的train需求放有图像数据集,val是验证数据集,只需要在train中截取部分图像数据放置在val,方便后续验证即可,后续对images下train图像数据集进行标注后生成的labels放置在labels下train下,label文件的名称会继承image文件的原名,改后缀为txt。需要再次截取对应的val-label放置在labels下的val下,与images下val图像数据一一对应,至此,数据集文件夹构建就完成了。
Labelimg:(本地标注)
terminal中使用pip导入labelimg工具
pip install labelimg
导入完成后,terminal中输入labelimg回车,调用labelimg标注工具,进入以下界面。
如果进入图形化界面后,尝试标注或未开始标注就闪退,有可能是出现了数据兼容问题,需要修改labelimg包内函数,检查traceback,最后一行就是出错的位置,将数据类型改为整型即可
在左侧导航栏处找到Pascal VOC(初始状态是这个类型)
需要点击他使其变为YOLO状态,这样我们得到的数据集标签才是适配YOLO的
为标注数据设置Auto Save mode,这样我们就不用一个个去给图像数据存路径了
点击Open Dir和Change Save Dir,选择我们的图像数据集路径为Open Dir,选择我们的标签数据集路径为Save Dir。
正常来讲,当我们设置完AUTO后,不再需要点击,只需要点击OpenDir即可在选择再次打开SaveDir。
OpenDir选择images下train,SaveDir选择labels下train,后续的val验证数据集手动截取即可。
好的,那么现在开始我们就可以着手标注数据了,按W启动光标开始标注,画完图框后给这个类别起个名字,这张图片中这个目标的标注就完成啦!
使用注意事项:
1.在进行数据标注前需要事先设置需要标注的图像文件夹以及标注后存储图像的文件夹
2.在标注数据前注意使用auto save来自动存储标注数据
3.一些快捷键:
W:一键标注
A/D:上/下张图片
4.当标注的目标只有一个时,可以选择defaulet label,为其设置常量,之后我们标单一目标时就不用一个一个去选标签名了,画完框就直接给标上我们设置的常量。
如此:
MakeSense(在线标注)
正在前往:链接嚄
点击右下角Get Start,让我们开始吧!
点击Drop Images,把我们的图像数据集扔进去
点击Object Detection,开始标注
因为这个测试数据集的label是空的,所以给我报了list empty
如果你其实有label数据集就直接load就行了,选个路径的问题,我就不在此展示了
现在让我们选则stat project
右侧是我们的label list,我们需要先行设置我们的list中的类,然后再进行标注
后续想要增删labels,可以在Actions-Edit Labels下操作
不止于矩形框,Make Sense同样支持,点,线,多边形
当我们标注完成后,可通过Actions下Export Annotations导出我们的标签数据集,放入labels的train和val
说实话MakeSense之所以出名还因为他能实现AI辅助
位于Actions-Run AI Locally
太遗憾了,截至2024.10.25,MakeSense仍然未推出V8的支持
比如当一个数据集,我们已经有训练的前提了,已经有了一个模型,我们可以直接向MakeSense导入我们的PT模型让其为我们辅助标注。导入我们的模型后,我们导入的数据集会用我们导入的模型先行预测一遍后,向我们展示预测结果框,一般来讲我们只需要伸缩一下框体让我们的数据标注更加精准就行了,这多用于数据集提纯啦,但目前MakeSense指支持YOLOV5和COCO的模型预测,我V8用的比较多,所以就没办法向大家展示囖,目前还是支持大家多用V5和V8这两款主流模型的,version只是版本号而已,V5和V8的开源项目至今没有停止更新,仍然值得我们去学习!
至此就是Make Sense标注工具的一些使用操作手册啦
以上就是两款常见的数据标注工具的常见操作啦,如果感觉有帮助的话请点个赞支持一下嚄😊
同时欢迎关注专栏Android端部署YOLOV8
我将在专栏中持续更新相关内容