YOLO预备-使用labelimg/makesence为图像数据集做标注

数据集的格式可以参考我的:

classes.txt和下面的cache都是我训练后自动生成的,不用管

images和labels文件夹下train-train,val-val,图像文件和标签文件需要一一对应好,正常情况下最开始我们创建的labels只是个空壳文件夹,里面是没有数据的,这一大串文件夹里面最先只有images下的train需求放有图像数据集,val是验证数据集,只需要在train中截取部分图像数据放置在val,方便后续验证即可,后续对images下train图像数据集进行标注后生成的labels放置在labels下train下,label文件的名称会继承image文件的原名,改后缀为txt。需要再次截取对应的val-label放置在labels下的val下,与images下val图像数据一一对应,至此,数据集文件夹构建就完成了。


Labelimg:(本地标注)

terminal中使用pip导入labelimg工具

pip install labelimg

导入完成后,terminal中输入labelimg回车,调用labelimg标注工具,进入以下界面。

如果进入图形化界面后,尝试标注或未开始标注就闪退,有可能是出现了数据兼容问题,需要修改labelimg包内函数,检查traceback,最后一行就是出错的位置,将数据类型改为整型即可


在左侧导航栏处找到Pascal VOC(初始状态是这个类型)

需要点击他使其变为YOLO状态,这样我们得到的数据集标签才是适配YOLO的

为标注数据设置Auto Save mode,这样我们就不用一个个去给图像数据存路径了

点击Open Dir和Change Save Dir,选择我们的图像数据集路径为Open Dir,选择我们的标签数据集路径为Save Dir。

正常来讲,当我们设置完AUTO后,不再需要点击,只需要点击OpenDir即可在选择再次打开SaveDir。

OpenDir选择images下train,SaveDir选择labels下train,后续的val验证数据集手动截取即可。

好的,那么现在开始我们就可以着手标注数据了,按W启动光标开始标注,画完图框后给这个类别起个名字,这张图片中这个目标的标注就完成啦!

使用注意事项:
1.在进行数据标注前需要事先设置需要标注的图像文件夹以及标注后存储图像的文件夹

2.在标注数据前注意使用auto save来自动存储标注数据

3.一些快捷键:
W:一键标注

A/D:上/下张图片

4.当标注的目标只有一个时,可以选择defaulet label,为其设置常量,之后我们标单一目标时就不用一个一个去选标签名了,画完框就直接给标上我们设置的常量。

如此:


MakeSense(在线标注)

正在前往:链接嚄

点击右下角Get Start,让我们开始吧!

点击Drop Images,把我们的图像数据集扔进去

点击Object Detection,开始标注

因为这个测试数据集的label是空的,所以给我报了list empty

如果你其实有label数据集就直接load就行了,选个路径的问题,我就不在此展示了

现在让我们选则stat project

右侧是我们的label list,我们需要先行设置我们的list中的类,然后再进行标注

后续想要增删labels,可以在Actions-Edit Labels下操作

不止于矩形框,Make Sense同样支持,点,线,多边形

当我们标注完成后,可通过Actions下Export Annotations导出我们的标签数据集,放入labels的train和val

说实话MakeSense之所以出名还因为他能实现AI辅助

位于Actions-Run AI Locally

太遗憾了,截至2024.10.25,MakeSense仍然未推出V8的支持

比如当一个数据集,我们已经有训练的前提了,已经有了一个模型,我们可以直接向MakeSense导入我们的PT模型让其为我们辅助标注。导入我们的模型后,我们导入的数据集会用我们导入的模型先行预测一遍后,向我们展示预测结果框,一般来讲我们只需要伸缩一下框体让我们的数据标注更加精准就行了,这多用于数据集提纯啦,但目前MakeSense指支持YOLOV5和COCO的模型预测,我V8用的比较多,所以就没办法向大家展示囖,目前还是支持大家多用V5和V8这两款主流模型的,version只是版本号而已,V5和V8的开源项目至今没有停止更新,仍然值得我们去学习!

至此就是Make Sense标注工具的一些使用操作手册啦


以上就是两款常见的数据标注工具的常见操作啦,如果感觉有帮助的话请点个赞支持一下嚄😊

同时欢迎关注专栏Android端部署YOLOV8

我将在专栏中持续更新相关内容

### LabelImg使用教程及注意事项 #### 工具简介 LabelImg 是一款开源的图形图像注释工具,广泛应用于计算机视觉领域中的目标检测图像识别任务。它支持多个操作系统(如 Windows、Linux 和 macOS),并能将标注信息保存为 XML 文件,与 PASCAL VOC 和 ImageNet 数据集格式兼容[^2]。 --- #### 安装步骤 1. **环境准备** 需要确保 Python 环境已正确配置,并安装 PyQt5 库作为 GUI 支持。可以通过以下命令安装依赖项: ```bash pip install pyqt5 lxml ``` 2. **克隆项目仓库** 下载 LabelImg 源码到本地机器上: ```bash git clone https://github.com/tzutalin/labelImg.git cd labelImg ``` 3. **运行程序** 启动 LabelImg 图形化界面的方法如下: ```bash python labelImg.py ``` 如果一切正常,将会弹出一个窗口供用户操作[^4]。 --- #### 使用方法 1. **打开图片目录** 在界面上点击 `Open Dir` 或者按快捷键 `Ctrl+O` 打开待处理的图片文件夹。 2. **切换标签类别** 利用左侧的下拉菜单选择当前对象所属的分类名称;如果默认列表不够,则可以手动编辑类名清单。 3. **绘制边界框** 单击鼠标左键拖拽形成矩形区域覆盖感兴趣的目标物体,松手后会自动生成对应的坐标参数。 4. **保存标注结果** 当完成一张图的所有标记之后记得及时存储更改——既可以选择逐张存盘(`Save`)也可以批量导出整个批次的数据至指定路径下的 `.xml` 文档之中[^1]。 --- #### 常见问题与解决办法 - **无法加载已有标注框** 若遇到导入 YOLO 格式的 txt 文件却看不到任何标注的情况,请确认版本匹配度或者尝试将其转成 PascalVOC xml 形式再重新读取[^3]。 - **中文乱码现象** 对于含有汉字字符的内容可能因为编码差异而出现问题,在这种情形之下建议调整系统的语言设定或者是修改源代码内部关于字符串解析的部分逻辑来适配特定需求。 --- #### 注意事项 - 提前规划好各个子项目的具体命名规则以便后期检索方便; - 经常备份重要进度以防意外丢失; - 学习熟悉快捷方式提升工作效率比如新增物件可以直接敲入字母代替点选按钮等等。 ```python # 示例脚本展示如何自动化执行部分流程 (仅作参考) import os from subprocess import call def start_labelimg(): """启动 LabelImg 软件""" script_path = 'path/to/your/labelImg.py' try: call(['python', script_path]) except Exception as e: print(f'Error occurred while starting LabelImg: {e}') if __name__ == "__main__": start_labelimg() ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值