深度学习Week 1,pytorch建立CNN网络--实现mnist手写数字识别

实战一:实现mnist手写数字识别

目录

实战一:实现mnist手写数字识别

1.设置GPU

2.导入数据

训练集,测试集处理(分成多个小数据集,随机打乱顺序(验证集不需要打乱))

查看数据

 构建CNN网络

查看模块结构

设置优化器,损失函数,学习率

训练

测试函数

正式训练

可视化损失和模型准确率

步骤及其注意事项


设置GPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
##设置GPU(没有就设置CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

导入数据

使用dataset下载MNIST数据集,并划分好训练集与测试集:torchvision.datasets.MNIST

torchvision.datasets是Pytorch自带的一个数据库,我们可以通过代码在线下载数据,这里使用的是torchvision.datasets中的MNIST数据集。

⭐torchvision.datasets.MNIST详解

torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)

参数说明:

  • root (string) :数据地址

  • train (string) :True = 训练集,False = 测试集

  • download (bool,optional) : 如果为True,从互联网上下载数据集,并把数据集放在root目录下。(如果已经下载,则不会再下载)

  • transform (callable, optional ):这里的参数选择一个你想要的数据转化函数,直接完成数据转化

  • target_transform (callable,optional) :接受目标并对其进行转换的函数/转换。

train_ds = torchvision.datasets.MNIST('data', 
                                      train=True,##训练集 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.MNIST('data', ##文件地址,这里就是根目录的文件,文件名 data
                                      train=False, ##是否是训练集 否就是测试集
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)##是否下载
                                #数据库下载 指定数据库下载  datasets.数据库名

训练集,测试集处理(分成多个小数据集,随机打乱顺序(验证集不需要打乱))

batch_size = 32##数据集切分成小块

train_dl = torch.utils.data.DataLoader(train_ds, ##加载的数据集
                                       batch_size=batch_size, ##每批加载的样本大小(默认值:1)
                                       shuffle=True)##如果为True,每个epoch重新排列数据。   训练集才需要

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

查看数据

取一个批次数据

imgs, labels = next(iter(train_dl))##得到数据 和对应标签   
imgs.shape

展示

import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减  
    npimg = np.squeeze(imgs.numpy())
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')##不显示坐标轴

例如:

 构建CNN网络

​
import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):##构建模型类  需要继承框架的模型类 并重写前向传播
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3   输入是1个通道的图片  输出通道32 
        self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(1600, 64)      #全连接层 输出特征个数  输出特征个数    
        self.fc2 = nn.Linear(64, num_classes)#最终输出是1-10数字的softmax多分类 所以是10
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     #加入激活函数   先卷积  在激活  再池化
        x = self.pool2(F.relu(self.conv2(x)))     

        x = torch.flatten(x, start_dim=1)     #扁平化   压成向量  然后输入到全连接层

        x = F.relu(self.fc1(x))##激活
        x = self.fc2(x)##最后先不激活  因为需要softmax  在后面的损失函数中自带softmax
       
        return x

​

查看模块结构

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
'''包括模块信息(每一层的类型、输出shape和参数量)、模型整体的参数量、模型大小、一次前向或者反向传播需要的内存大小等'''
model = Model().to(device)

summary(model)

设置优化器,损失函数,学习率

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数  为交叉熵损失函数,用于解决多分类问题,也可用于解决二分类问题。在使用nn.CrossEntropyLoss()其内部会自动加上Sofrmax层 
learn_rate = 1e-2 # 学习率  
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)## 前面是模型的参数  梯度下降 梯度下降是求导 更新w b等参数的过程

训练

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32) 用于求平均损失 

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率 
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)#将所有最开始读取数据时的tensor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行。 写的次数等于需要保存GPU上的tensor变量的个数

        
        # 计算预测误差
        pred = model(X)          # 网络输出  还未激活的值
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失  将预测值和真实值放入损失函数得到损失值 
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零 #   先把其需要梯度下降标志归0 避免在上一次基础上偏导
        loss.backward()        # 反向传播  产生梯度
        optimizer.step()       # 每调用一次就更新一次梯度          
        # 记录acc与loss 训练损失和正确率   
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()  
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches#平均损失

    return train_acc, train_loss

测试函数

与训练函数相似,只是不需要再梯度更新,和优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    #在该模块下,所有计算得出的tensor的requires_grad都自动设置为False。
#即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device) #先预先放到GPU上
            
            # 计算loss
            target_pred = model(imgs)#通过模型得到y
            loss        = loss_fn(target_pred, target)#计算损失 --自动加激活softmax
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

正式训练

1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()。model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()。model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练集启用 Dropout  测试机不需要

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

epochs     = 5#总循环  整个数据集 训练5次
train_loss = []#分别记录每次的  训练/测试损失   和准确率
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()#启用 Dropout
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()#不启用 Droupout
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')#注意
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

可视化损失和模型准确率

步骤及其注意事项

1.数据加载,预处理(分成小数据集,打乱,转化类型)

2.构建网络模型(继承框架模型,设置网络各层,重载前向传播,注意最后一层输出层的激活函数包含在了损失函数中)

3.设置学习率,优化器,损失函数(损失函数自带输出层激活函数)

4.训练,验证函数(训练时注意每次把梯度grad清空,防止二次求导)

5.最终训练(训练时使用train(),验证用eval())

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值