(本章重点:均值、方差组成)
一、 均值
纯系学说:变异区分为遗传的变异与非遗传的变异,提出了基因型和表现型的概念,这为理解连续性变异也是遗传性状提供了依据。
多基因假说:通过假设大量基因(多基因)的相互作用对性状产生小的加性效应来解释数量变异的一种假说。(基因数量、基因效应和环境效应)
加性效应和显性效应:
二、 方差
方差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。方差分析主要应用:1、均数差别的显著性检验,2、分离各有关因素并估计其对总变异的作用,3、分析因素间的交互作用。
方差的定义公式为:2= (X-)2/n(总体) S2= (X-Xm)2/n (样本)
计算公式:2=(X2-(X)2/n)/n =√(X2-(X)2/n)/n
以样本方差和标准差估计总体方差和标准差的公式为:
S2=(X2-(X)2/n)/(n-1) S=√(X2-(X)2/n)/(n-1)
方差(variance, 2, S2 ) | 各数据与平均数差数的平方和的平均值称为方差,也称为变异数。 |
表型方差VP | 试验单位群体内表型间差异引起的方差 |
基因型方差VG | 试验单位的遗传群体内基因型值之间的差异引起的方差。基因型方差包括加性遗传方差VA ,显性遗传方差VD和上位性遗传方差VI,构成群体内总的遗传方差VG |
环境方差VE | 环境因素引起的方差 |
基因型与环境协方差CovGE | 试验单位间基因型效应环境因素平行变异的统计量 |
基因型与环境互作方差VGE | 一定的环境差异对不同基因型产生不同效果的现象即GE |
协方差 | 两个不同参数之间的方差就是协方差即COV(X,Y)=E[(X-E(X))(Y-E(Y))]若X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。 COV(X, X)=V(X),COV(Y, Y)=V(Y) 协方差的定义公式 ![]() |
遗传方差的计算:
1、 F2群体的遗传方差:单基因位点
2、 F2群体的遗传方差:多基因位点
如果各个位点的基因效应相等,则 ,表示基因的平均显性度。考虑到环境变异,F2世代的方差为,
.F2世代环境方差的估计,
3、 回交群体B1和B2的遗传方差:如果性状受k对基因控制
ad正负号均可;
ad绝对值,正号。
若F==
,则各位点显性基因集中分布,也即显性效应方向一致,累加。
若F=<
,则各位点显性基因分布不集中,即显性效应方向不一致,很多抵消。
若F>0,则VB2>VB1,则VB2中基因位点的a和d多同号,说明P1有较多的增效基因。
4、 F3世代的遗传方差: 单基因位点
F1配子变异产生的F2株间变异和F3 系间差异;F2不同配子产生的家系内方差的平均。
F3家系间方差(一阶方差)
F3家系内方差的平均 second rank variance
F3世代的总遗传方差
F2个体与F3家系间的遗传协方差
F3世代的遗传方差:多基因系统,VA和VD为F2世代的加性方差和显性方差
F3世代的环境方差
VEW家系内环境方差(within-family environ. Variance)
VEC家系间环境方差(between-family environ. variance)
实际上,V1F3和V2F3两个方差都含有非遗传成分,即家系间的环境方差+抽样方差和家系内环境方差。n为家系内个体数,若各家系个体数不等,则用调和平均数。因此在考虑环境方差时
t=(Xbar-)/SXbar 计算标准差和方差。
如果满足加性显性模型,则t测验,检验A/B/C=0, 6个基本世代可以得出以上参量。
例子:每群体各100个体的平均数和方差估计值
世代 | 平均数 | 方差 | 各群体方差自由度为99 ABC的t测验,自由度为包括的世代自由度之和,分别为297,297和396。 根据公式计算 A=-0.83,VA= 4.36,t=-0.39 B=4.81,VB=4.81,t=0.04 C=19.45,VC=19.45,t=0.47 均不显著,则接受假设,即符合加显性模型 |
P1 | 69.44 | 59.73 | |
P2 | 59.04 | 65.71 | |
F1 | 83.44 | 51.81 | |
F2 | 74.36 | 100.73 | |
B1 | 76.03 | 81.05 | |
B2 | 71.28 | 90.83 |
那么加性和显性效应谁更重要?
比较方差大小显著性,用F测验
F=Vg/VE
F2: F(99,297)=VF2/VE=100.75/59.08=1.71**
B1: F(99,297)=VB1/VE=81.05/59.08=1.37*
B2: F(99,297)=VB2/VE=90.83/59.08=1.54**
显然存在遗传方差
VA=2VF2-VB1-VB2=29.62
VD=VB1+VB2-VF2-VE=12.05
VAD=(VB1-VB2)/2=4.89
联合尺度测验(Joint scaling test) 简单尺度测验可能有时结果不一致,另外,每个简单测验没有同时利用6个世代信息。计算步骤:考虑各个世代的权重,用方差的倒数表示;用6个世代估计3个参数,即6个方程估计3个参数,故应用加权最小二乘法。
两个基因位点间的相互作用Epistasis,AA 纯合基因型间的上位性;DA/AD杂合基因型和纯合基因型间的上位性;DD杂合基因型间的上位性。
加性-显性-上位性模型下双亲及其杂交后代中群体平均数的分解,亲本P1的基因型为AABB,亲本P2的基因型为aabb。
推导如下:
5、 数量性状的有效因子数估计
Castle-Wright公式(1921)位点数k基本假定:加性模型(d=0);等效;无连锁;正效基因集中在P1,负效基因集中在P2 。
F2遗传方差
数量性状有效因子数的估计
例子:两亲本有几个开花期基因差异?
k=3.46≈4,两亲本对抽穗期大约有4对基因的差异。