Android OpenCV(三十七):轮廓外接多边形

本文介绍了如何在Android中使用OpenCV进行轮廓外接多边形处理,通过approxPolyDP方法实现曲线的线化简。详细讲解了算法原理和参数含义,并提供了实际代码示例。
摘要由CSDN通过智能技术生成

public static void approxPolyDP(MatOfPoint2f curve, MatOfPoint2f approxCurve, double epsilon, boolean closed)

  • 参数一:curve,输入轮廓像素点。

  • 参数二:approxCurve,多边形逼近结果,包含多边形顶点坐标集。

  • 参数三:epsilon,多边形逼近精度,原始曲线与逼近曲线之间的最大距离。

  • 参数四:closed,逼近曲线是否闭合的标志,true表示封闭,false,表示不封闭。

该方法使用的是Douglas-Peucker algorithm(道格拉斯-普克算法)Douglas-Peukcer算法由D.Douglas和T.Peueker于1973年提出,也称为拉默-道格拉斯-普克算法迭代适应点算法分裂与合并算法D-P算法)是将曲线近似表示为一系列点,并减少点的数量的一种算法,是线状要素抽稀的经典算法。用它处理大量冗余的几何数据点,既可以达到数据量精简的目的,又可以在很大程度上保留几何形状的骨架。现有的线化简算法中,有相当一部分都是在该算法基础上进行改进产生的。它的特点是具有平移和旋转不变性,给定曲线与阈值后,抽样结果一定

算法的基本思路为:

对每一条曲线的首末点虚连一条直线,求所有点与直线的距离,并找出最大距离值dmax,用dmax与限差D相比: 若dmax<D,这条曲线上的中间点全部舍去; 若dmax≥D,保留dmax对应的坐标点,并以该点为界,把曲线分为两部分,对这两部分重复使用该方法

算法过程

操作

/**

  • 轮廓外接多边形
  • author: yidong
  • 2020/10/7
    */
    class ContourPolyActivity : AppCompatActivity() {

private lateinit var mBinding: ActivityContou

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值