public static void approxPolyDP(MatOfPoint2f curve, MatOfPoint2f approxCurve, double epsilon, boolean closed)
-
参数一:curve,输入轮廓像素点。
-
参数二:approxCurve,多边形逼近结果,包含多边形顶点坐标集。
-
参数三:epsilon,多边形逼近精度,原始曲线与逼近曲线之间的最大距离。
-
参数四:closed,逼近曲线是否闭合的标志,true表示封闭,false,表示不封闭。
该方法使用的是
Douglas-Peucker algorithm(道格拉斯-普克算法)
。Douglas-Peukcer算法
由D.Douglas和T.Peueker于1973年提出,也称为拉默-道格拉斯-普克算法
、迭代适应点算法
、分裂与合并算法
、D-P算法
)是将曲线近似表示为一系列点,并减少点的数量的一种算法,是线状要素抽稀的经典算法。用它处理大量冗余的几何数据点,既可以达到数据量精简的目的,又可以在很大程度上保留几何形状的骨架。现有的线化简算法中,有相当一部分都是在该算法基础上进行改进产生的。它的特点是具有平移和旋转不变性,给定曲线与阈值后,抽样结果一定
。算法的基本思路为:
对每一条曲线的首末点虚连一条直线,求所有点与直线的距离,并找出最大距离值dmax,用dmax与限差D相比: 若dmax<D,这条曲线上的中间点全部舍去; 若dmax≥D,保留dmax对应的坐标点,并以该点为界,把曲线分为两部分,对这两部分重复使用该方法
操作
/**
- 轮廓外接多边形
- author: yidong
- 2020/10/7
*/
class ContourPolyActivity : AppCompatActivity() {
private lateinit var mBinding: ActivityContou