MMDetection训练COCO数据集新手快速上手

本文详细介绍了如何在MMDetection3.0.0版本中上传COCO数据集,修改配置文件(包括模型、数据集、训练计划),以及进行模型训练,包括查看训练结果和保存模型的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MMDetection版本  3.0.0

1、上传COCO数据集

数据集放在mmdetection-3.0.0/data/coco下

mmdetection-3.0.0/data/coco下的文件组织如下图,annotations存放json文件,test2017、train2017、train2017下分别存放图片,png或jpg格式都可以

mmdetection-3.0.0/data/coco/annotations下的文件组织如下图

注:以上的文件命名都可以根据自己的喜好重新命名,不过会需要修改配置文件,接下来会详细介绍

2、修改配置文件

(1)打开mmdetection/configs,选择自己想要的模型总配置文件,比如我这里选择的./config/retinanet/retinanet_r50_f

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值