6.方差分析——单因素检验、事后检验的数学公式与代码实现

1.方差分析的核心

方差分析(Analysis of Variance,ANOVA)是假设检验的一种延续与扩展,主要用来对多个总体均值(三组或三组以上均值)是否相等作出假设检验,研究分类型自变量对数值型因变量的影响。

它的零假设和备择假设分别为:
在这里插入图片描述
方差分析的核心
因变量的总变化由两部分引起:

  • 自变量引起的变化(可以解释的变化)
  • 其他因素引起的变化(无法解释的变化)
    在这里插入图片描述

2.单因素方差分析的前提条件

  • 独立性

    • 组内独立(随机抽样、随机分配;样本容量<10%总体容量)
    • 组间独立(非配对)
  • 正态性:各组总体服从正态分布

    • 样本容量较大(每组样本容量≥10)时,如果一定程度上违反了正态性,仍可以使用ANOVA
    • 样本容量较小时,如果违反了正态性,则应使用非参数方法进行分析
  • 方差齐性:各组总体的方差相等

    • 各组样本的样本容量相等时,如果一定程度上违反了方差齐性,仍可以使用ANOVA
    • 各组样本的样本容量不相等时,如果最大的样本标准差与最小的样本标准差之比不超过2,仍可以使用ANOVA

3.单因素方差分析

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4.多重比较

在这里插入图片描述

对于方差分析的结论,如果拒绝了原假设H0,则有必要进一步分析,到底是哪两组均值不相等,这就是多重比较。
post-hoc(事后检验)
在这里插入图片描述

5.单因素方差分析的SciPy实现

CCSS案例中提供了2030年4月,以及2030、2031、2032年12月四个时间点的消费者信心监测数据, 现希望分析这四个时间点的消费者信心指数平均水平是否存在差异。这里只使用北京消费者的数据进行分析

from scipy import stats as ss
import pandas as pd
import numpy as np
import matplotlib
# 解决绘图的兼容问题
%matplotlib inline
matplotlib.rcParams['font.sans-serif'] = ['SimHei'] 
ccss = pd.read_excel("CCSS_sample.xlsx",sheet_name='CCSS')
ccss.query("s0 == '北京'").groupby('time').index1.describe()
a = ccss.query("s0 == '北京' & time == 203004").index1
b = ccss.query("s0 == '北京' & time == 203012").index1
c = ccss.query("s0 == '北京' & time == 203112").index1
d = ccss.query("s0 == '北京' & time == 203212").index1
ss.levene(a, b, c, d) # 方差齐性检验

6.事后检验的scikit_posthocs代码实现

from scipy import stats as ss
import pandas as pd
import numpy as np
import matplotlib
# 解决绘图的兼容问题
%matplotlib inline
matplotlib.rcParams['font.sans-serif'] = ['SimHei'] 
ccss = pd.read_excel("CCSS_sample.xlsx",sheet_name='CCSS')
import scikit_posthocs as sp
# 创建对象,该对象接收事后检验的数据,并且设置p值校正的方法(控制两两比较的a值)为bonferroni
pc = sp.posthoc_conover(ccss, val_col='index1', group_col='time', p_adjust = 'bonferroni')
# 使用热力图显示比较结果
heatmap_args = {'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 
                'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]}
sp.sign_plot(pc, **heatmap_args)


注意:

'bonferroni’通过控制CER,使得全部比较所犯“弃真”错误的最大概率值被控制在所设定的水准以内,其计算公式为:CER=α/c

c为需要进行比较的次数
设置CER,即每次比较使用的αij小于α/c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想成为数据分析师的开发工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值