KM算法解决二分图最大权分配问题

匈牙利算法和KM算法都可用来解决任务分配问题(亦称指派问题):假设有n名员工以及n份工作,一个人只能完成一项任务且能完成的任务各不相同。问如何安排员工才能使效率达到最大。

用大白话来描述二分图:二分图可划分为两个集合{员工},{工作},两个集合之间的元素可以相连,同一个集合内的元素不能相连。

如图的二分图匹配问题可以用匈牙利算法解决。

现在我们思考另外一个问题:上图中我们默认A、B、C的工作效率是一样的(即A员工或者B员工完成工作a的时间是相等的),这种情况在现实生活中只是少数。那么A、B、C员工完成不同的工作有不同效率的话,应该如何得到最优匹配呢?

KM算法就是用来解决二分图最大权分配问题,其步骤如下所示:

①左边的顶点赋值为最大权重,右边顶点赋值为0。

 ②匹配。匹配的原则是只匹配与最大效率相等的边。如果匹配失败,那么参与匹配的所有左顶点的值-1,右顶点+1,直至匹配完成。

按照此约定,我们对A进行匹配:连接Ac,匹配成功!

接下来我们对B员工进行匹配。但是我们发现,与B最大效率匹配的边只有Bc,而c已经和A进行匹配了,怎么办呢?正常的思路是看看A还有没有其他符合的边,只可惜没有。按照匹配的原则,需要对A、B的效率-1,对c+1。这样一来,A的效率更新为3,B的效率更新为2,c的值变为1。

通过-1、+1操作,Ac、Bc仍然是可以匹配的边:3+1=4,2+1=3。除此之外还给我们带来了新的选择:Aa和Ba。

这样一来,B就可以在不改变A工作的前提下找到工作了。匹配Ba成功!

 现在我们来匹配C。由于5+1≠5,且c已经和A匹配了。于是我们找到A,看看A还有没有别的选择。我们发现A出了可以和c匹配(3+1=4),还可以和a进行匹配(3+0=3)。正想匹配Aa的时候又发现a已经和B进行匹配了。于是我们找到B,看看B还有没有其他符合的匹配。但是此时B表示自己能力有限,可谓是爱莫能助啊,自己只能和a进行匹配了。那么参与到此次"争端"的结点有:A、B、C、a、c,交给匹配原则进行”处置“。

(这步有点套娃,原理搞懂就不觉得难了。)

更新各值如图所示:

对于现在来说,B就可以匹配了!(1+0=1)

由匈牙利算法的取反操作(下方有解释),即可得到最终匹配。

 

 这就是KM算法的整个过程,每次给一个顶点找到最大权重边,配合匈牙利算法找到最大匹配,从而得到完美匹配

匈牙利算法处理”冲突问题“:

在Aa已经匹配成功的前提下,若B只能匹配a,那么匈牙利算法告诉我们可以通过一条增广路径,通过取反操作,我们就能匹配更多的点。

增广路径的定义:从一个未匹配的顶点开始,经过若干个匹配顶点,最后到达对面集合的一个未匹配顶点的路径,也就是说,这条路径将两个不同集合的两个未匹配顶点通过一系列匹配顶点相连。

在此题中,A还可以和c匹配,就产生了增广路:B--a--A--c,经过取反操作之后,匹配更新为:

 由这一轮操作,增加了一条匹配边,解决了矛盾。这就是匈牙利算法增广路径取反的巧妙之处!

 我们可以在出现冲突的时候寻找增广路径,从而找到最优匹配。

参考文章:km算法入门 - logosG - 博客园

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二分大权匹配是指在一个二分中,找到一种匹配方式,使得匹配的边的权重之和最大。 首先,二分是指一个中的所有节点可以被分为两个不相交的集合,并且中的每条边都连接着一个集合中的节点和另一个集合中的节点。 二分大权匹配可以用多种算法来求解,包括匈牙利算法KM算法等等。其中,匈牙利算法是一种经典的求解二分最大匹配问题算法。 以下是匈牙利算法的基本思想和步骤: 1. 初始化:将每个节点都标记为未匹配状态。 2. 对于二分中的每个节点,依次进行匹配。 3. 对于每个未匹配的节点,尝试找到它可以匹配的节点。具体地,对于一个未匹配的节点,从它所在的集合中选择一个节点,然后尝试将它们匹配起来。如果匹配成功,则将两个节点标记为已匹配状态。 4. 如果一个节点无法匹配,则尝试将它和其他未匹配的节点匹配。如果仍然无法匹配,则返回失败。 5. 当所有节点都被匹配完毕时,算法结束。 在匈牙利算法的实现中,可以使用增广路径来优化匹配过程。增广路径是指一条从未匹配的节点出发,经过一系列已匹配的节点,最终到达另一个未匹配的节点的路径。 具体地,增广路径的求解步骤如下: 1. 从一个未匹配的节点开始,沿着未匹配的节点尝试匹配。 2. 如果找到了一个匹配节点,则从该匹配节点开始,继续沿着未匹配的节点尝试匹配。 3. 如果最终找到了一个未匹配的节点,则说明找到了一条增广路径。 在匈牙利算法中,每次找到一条增广路径时,可以将该路径上的匹配状态进行调整,使得当前的匹配数量增加一。由于增广路径的搜索过程可以通过 DFS 或 BFS 进行,因此匈牙利算法的时间复杂度为 $O(NM)$,其中 $N$ 和 $M$ 分别表示二分的两个集合中的节点数。 需要注意的是,虽然匈牙利算法的实现比较简单,但是对于大规模的来说,它的时间复杂度可能较高,而且可能会存在一些性能问题。因此,在实际应用中,可能需要使用一些更加高效的算法来求解二分大权匹配问题

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值