今天在Windows操作系统跑完模型之后想保存模型,无奈遇到如下报错:
真的是挺纳闷啊!
这是关于pickle的报错,于是上网查找了关于pickle的信息:
pickle提供了一个简单的持久化功能,可以将对象以文件的形式存放在磁盘上。
但是在windows操作系统中,进程使用的是socket对象,socket对象是不可以序列化的。(相比之下linux操作系统中的进程使用的是fork对象,因此可以被序列化)
解决办法:
要把具有网络结构定义的代码剪切(或者复制+注释)在另一个python脚本文件中,再通过from..import的方式把网络导入原文件中。
小栗子:
我的test01文件中有Net网络的定义如下,发生了上述所说的报错。
class Net(torch.nn.Module):
def __init__(self, n_feature, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, 100)
self.predict = torch.nn.Linear(100, n_output)
def forward(self, x):
out = self.hidden(x)
out = torch.relu(out)
out = self.predict(out)
return out
把该段代码剪切到一个新的python文件:NetWork中,再通过如下代码在test01中导入:
from NetWork import Net
那么就可以顺利保存模型了!