模板:
1.dfs
#include<bits/stdc++.h>
using namespace std;
int n, m;
int a[ ];
int ans[ ];
void dfs(int x){
if (判断条件){
cout<<输出
return ;
}
for (int i = 开始的地方; i <= n; i++)
if (a[i] == 0) {
a[i]=1;//标记上
dfs(x + 1);//下一个数字
a[i]=0;//回溯
}
return ;
}
int main(){
dfs(1);
return 0;
}
例题:P1219 [USACO1.5]八皇后 Checker Challenge
题目描述
一个如下的 6 \times 66×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列 2\ 4\ 6\ 1\ 3\ 52 4 6 1 3 5 来描述,第 ii 个数字表示在第 ii 行的相应位置有一个棋子,如下:
行号 1\ 2\ 3\ 4\ 5\ 61 2 3 4 5 6
列号 2\ 4\ 6\ 1\ 3\ 52 4 6 1 3 5
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 33 个解。最后一行是解的总个数。
输入格式
一行一个正整数 nn,表示棋盘是 n \times nn×n 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
输入输出样例
输入 #1复制
6
输出 #1复制
2 4 6 1 3 5 3 6 2 5 1 4 4 1 5 2 6 3 4
#include <iostream>
using namespace std;
#define maxn 100
int b1[maxn], b2[maxn], b3[maxn];
int a[maxn];
int n;
int ans = 0;
void dfs(int x) {
if (x > n) {//判断条件
ans++;
if (ans <= 3) {
for (int i = 1; i <= n; i++) {
cout << a[i] << " ";//输出
}
cout << endl;
}
}
else {
for (int i = 1; i <= n; i++) {
if (b1[i] == 0 && b2[x + i] == 0 && b3[x - i + 15] == 0) {//未被标记
a[x] = i;
b1[i] = 1; b2[x + i] = 1; b3[x - i + 15] = 1;//标记
dfs(x + 1);//递归
b1[i] = 0; b2[x + i] = 0; b3[x - i + 15] = 0;//未被标记
}
}
}
}
int main()
{
cin >> n;
dfs(1);
cout<<ans;
}
2.BFS
利用队列进行回溯,用例题说明会更加好理解一点
P1443 马的遍历
题目描述
有一个 n \times mn×m 的棋盘,在某个点 (x, y)(x,y) 上有一个马,要求你计算出马到达棋盘上任意一个点最少要走几步。
输入格式
输入只有一行四个整数,分别为 n, m, x, yn,m,x,y。
输出格式
一个 n \times mn×m 的矩阵,代表马到达某个点最少要走几步(左对齐,宽 55 格,不能到达则输出 -1−1)。
输入输出样例
输入 #1复制
3 3 1 1
输出 #1复制
0 3 2 3 -1 1 2 1 4
#include <iostream>
#include <queue>
#include <cstring>
using namespace std;
int n, m, sx, sy;
int mp[420][420];
int xx[] = { 2,2,1,1,-1,-1,-2,-2 };
int yy[] = { 1,-1,2,-2,2,-2,1,-1 };
struct node {
int x, y, s;
};
int main()
{
cin >> n >> m >> sx >> sy;
memset(mp, -1, sizeof(mp));//初始化数组取-1
queue<node>v;
v.push((node){sx,sy,0});//向队列里面压入开始的点
mp[sx][sy] = 0;//开始的点标记为0
while (!v.empty()) {//当队列为空时
for (int i = 0; i < 8; i++) {//马的跳动方向最多8个
int dx = xx[i] + v.front().x;
int dy = yy[i] + v.front().y;
if (dx >=1 && dx <= n && dy >=1 && dy <= m&&mp[dx][dy]==-1) {//在这个范围内且没有被扫描到,进入
v.push((node){dx,dy,v.front().s + 1 });//压入该数并标记好,步数加一
mp[dx][dy] = v.front().s + 1;//标记到达该位置的步数
}
}
v.pop();//弹出已扫描的元素
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
printf("%-5d", mp[i][j]);//输出
}
printf("\n");
}
}
整体的模板,思路还是比较清晰地,在搜索方面一定要注意是否该数被搜索过,注意if判断的条件回溯,递归的细节,刚接触时确实思路不太清晰,复习过后,明显思路清晰多了 ,加油,明天复习完基础数学,就继续按老师的节奏走了,开心,加油!