SPSS时间序列模型预测

前言:

本专栏参考教材为《SPSS22.0从入门到精通》,由于软件版本原因,部分内容有所改变,为适应软件版本的变化,特此创作此专栏便于大家学习。本专栏使用软件为:SPSS25.0

本专栏所有的数据文件请点击此链接下载:SPSS数据分析专栏附件


目录

1.时间序列预测模型

2.SPSS实现

3.结果分析


1.时间序列预测模型

        时间序列预测是指根据时间序列数据的历史值,来预测未来的数值走势。常用的时间序列预测模型包括ARIMA模型AR模型MA模型等。ARIMA模型是一种广泛使用的时间序列预测模型,它包括自回归(AR)项差分(I)项移动平均(MA)项。AR模型是仅包括自回归项的模型,而MA模型则只包括移动平均项。选择哪种模型取决于数据的特征和预测的需求。对于数据较为规律的情况,ARIMA模型被广泛应用并取得了不错的效果,但对于异常值较多或波动较大的数据,则需要选择其他的方法。

2.SPSS实现

(1)定义日期和时间参考序列图,此处不再重复介绍。

(2)打开“data12-02”数据文件,选择“分析”——“时间序列预测”——“创建传统模型”,弹出下图所示的对话框。

(3)按照下图所示设置变量选项卡。

(4)单击“统计”选项卡, 按照下图设置选项。

(5) 单击“图”选项卡,按照下图设置选项。

(6)单击“保存”选项卡 ,弹出下图所示的对话框,单击“浏览”保存文件。(如果不想保存此步骤可跳过)

(7) 单击“选项”选项卡,按照下图设置对应选项。

 (8)完成所以设置后,单击“确定”按钮执行命令。

3.结果分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

抱抱宝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值