引言:
在正文开始之前,首先给大家介绍一个不错的人工智能学习教程:https://www.captainbed.cn/bbs。其中包含了机器学习、深度学习、强化学习等系列教程,感兴趣的读者可以自行查阅。
一、什么是K近邻回归?
K近邻回归(K-Nearest Neighbors Regression,简称KNN回归)是一种简单直观的机器学习算法。KNN回归通过寻找样本空间中与目标点最接近的K个邻居,利用这些邻居的平均值或加权平均值来预测目标点的值。KNN回归属于非参数模型,因为它不对数据的分布做出假设,也不需要训练过程。
二、K近邻回归的原理
KNN回归的核心思想非常直观,即“相似的样本具有相似的输出”。具体步骤如下:
-
计算距离:对于待预测的样本点,计算其与训练集中每一个样本点之间的距离。常用的距离度量包括欧氏距离(Euclidean Distance)、曼哈顿距离(Manhattan Distance)等。
欧氏距离的计算公式为:
d ( x i , x j ) = ∑ k = 1 n ( x i , k − x j , k ) 2 d(x_i, x_j) = \sqrt{\sum_{k=1}^{n} (x_{i,k} - x_{j,k})^2} d(xi,xj)=k=1∑n(xi,k−xj,k)2
其中,$ x_i $ 和 $ x_j $ 分别是两个样本点的特征向量,$ n $ 是特征的维数。 -
选择K个邻居:根据计算得到的距离,选择距离待预测样本点最近的K个邻居。
-
计算预测值:根据选中的K个邻居的输出值,计算待预测样本点的输出值。常用的方法包括简单平均和加权平均。如果是简单平均,则预测值为K个邻居的输出值的算术平均:
y ^ = 1 K ∑ i = 1 K y i \hat{y} = \frac{1}{K} \sum_{i=1}^{K} y_i y^=K1i=1∑Kyi
其中,$ y_i $ 是第 i i i个邻居的输出值。如果采用加权平均,则预测值为K个邻居的加权平均值,权重通常为邻居与待预测样本点距离的倒数:
y ^ = ∑ i = 1 K 1 d ( x , x i ) y i ∑ i = 1 K 1 d ( x , x i ) \hat{y} = \frac{\sum_{i=1}^{K} \frac{1}{d(x, x_i)} y_i}{\sum_{i=1}^{K} \frac{1}{d(x, x_i)}} y^=∑i=1Kd(x,xi)1∑i=1Kd(x,xi)1yi
其中,$ d(x, x_i) $ 是待预测样本点与第 $ i $ 个邻居的距离。
三、K近邻回归的优缺点
优点:
- 简单直观:算法思想简单,容易理解和实现。
- 无模型假设:KNN回归不对数据的分布做任何假设,适用于各种数据分布。
- 高灵活性:由于无需训练过程,KNN回归可以处理在线学习问题,也可以随时加入新的数据。
缺点:
- 计算复杂度高:对于大规模数据集,计算每个样本点的距离代价较高,影响预测效率。
- 维度灾难:随着特征维数的增加,样本之间的距离变得越来越难以区分,导致预测效果下降。
- 对异常值敏感:KNN回归直接依赖于邻居的输出值,如果邻居中存在异常值,可能会严重影响预测结果。
四、案例分析
在这一部分,我们还是使用加州房价数据集来演示如何应用K近邻回归算法进行预测。加州房价数据集包含了加州的街区信息,每个街区有多项特征,包括人口、收入、房屋年龄等。目标是根据这些特征预测该街区的房屋中位数价格。
-
数据加载与预处理:
- 加载加州房价数据集并进行标准化处理,确保所有特征都在相同的尺度上。
- 将数据集划分为训练集和测试集,比例为8:2。
-
模型训练:
- 使用
KNeighborsRegressor
创建一个K近邻回归模型,选择K=5
,即考虑最近的5个邻居。 - 用训练集的数据来训练模型。
- 使用
-
模型预测:
- 利用训练好的模型对测试集进行预测,并计算均方误差(MSE)作为模型性能的评估指标。
代码实现:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error
# 加载加州房价数据集
california = fetch_california_housing()
X = california.data
y = california.target
# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# 创建K近邻回归模型并训练
knn = KNeighborsRegressor(n_neighbors=5)
knn.fit(X_train, y_train)
# 预测测试集
y_pred = knn.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print(f"测试集的均方误差: {mse:.2f}")
# 可视化结果
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred, edgecolor='k', alpha=0.7)
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 'r--', lw=3)
plt.xlabel("真实房价")
plt.ylabel("预测房价")
plt.title("K近邻回归预测结果")
plt.show()
结果分析:
测试集的均方误差: 0.43。
通过散点图,可以看到模型预测的房价与真实房价之间的关系。
五、总结
K近邻回归是一种简单且易于理解的回归算法,适合用于小规模数据集或需要在线更新模型的场景。然而,在使用KNN回归时,需要考虑数据的维数和计算复杂度,并对异常值进行处理,以确保模型的预测效果。