2024——Knowledge evolution learning: 弱监督网络用于高分土地覆盖分类

论文介绍了一种无监督的弱监督语义分割框架,通过知识进化从低级别共性到高级别特殊性的学习过程,利用超像素技术和动态标签优化策略,以及一致性正则化来优化和验证知识。方法包括LLC知识提取、HLS知识自动探索和两者间的动态交互。
摘要由CSDN通过智能技术生成

原文: ISPRS 2024.1

Knowledge evolution learning: A cost-free weakly supervised semantic segmentation framework for high-resolution land cover classification

好像直接点不开,重新拷贝一下网址在新浏览器就能打开了。

这是这篇论文的缩写对照:

high-resolution (HR)

land cover products (LCP)

low-level commonality (LLC) knowledge

high-level specialty(HLS)

knowledge exploration mechanism (KEM)

方法概述

KE-WESUP主要包括三个任务:(1)提取LLC知识。采用基于超像素的训练方法,缓解LCP与HR图像的不一致性,直接从LCP中学习LLC知识。(2) HLS知识的自动探索。提出了一种动态标签优化策略,以获得少量高置信度的点标签,并通过知识探索机制鼓励模型自动挖掘HLS知识,从而促使模型适应复杂的hr场景。(3) LLC和HLS知识的动态交互。采用一致性正则化方法来实现LLC和HLS知识的进一步优化和验证。

我的总结:(创新点

论文思想是知识可以进化,可以从最初的低分辨率知识进化到高分辨率水平知识。关键在于如何构建损失函数使得网络学习高分的知识,涉及到样本的选择,获取等等。

1低分知识可以从低分产品中学,通过超像素缓解分辨率问题;

2基于学习到的LLC知识,设计了一种动态标签优化(DLO)策略,以获得少量高置信度的点标签(筛选保留LLC知识),并通过KEM在有限的点标签下探索HLS知识。

3设计了知识动态交互流程,实现了LLC和HLS知识的进一步验证和优化。

具体方法

LLC知识

由于LR标签与HR图像分辨率不一致,所以通过在LR标签上投影超像素,通过多数投票机制将LR标签转化为超像素标签。在训练过程中,首先对HR图像进行动态Felzenszwalb超像素分割,然后将LR标签转换为超像素标签。最后,每个超像素的交叉熵计算损失函数。

HLS知识  (LLC + HLS)

在LLC学习后冻住,开始HLS学习 。HLS学习阶段使用与LLC学习相同的主干,但在完全连接层之后连接两个分类器,即基本分类器(fb)和扩展分类器(fe)。利用fb进一步优化LLC知识,利用fe挖掘HLS知识。

首先,我们将LLC知识,即权重信息,转移到HLS网络,分类器的权重赋给了HLS学习网络中的fb,fe随机分布。

其次,输入图像将由LLC学习网络进行预测,并由HLS学习网络进行计算。然后,我们建议将LLC学习预测与超像素标签再次结合,按一定比例0.02随机选择点标签,并使用DLO策略来提高其置信度。保留的点标签与fb用于计算低分损失:

最后,将点标签逐步扩展为伪标签,通过fe输出的概率来计算高分的损失,在培训过程中不增加任何成本使模型逐步学习HLS知识。

动态标签优化(DLO)   (针对HLS中的fb: 低分知识)

尽管使用超像素方法改进了LLC预测,但初始随机点标签仍然不完美。错误的样本点会影响LLC知识的优化,同时会导致KEM后fe的严重误差传播。因此,我们设计了一种策略,通过在训练过程中使用分层向量来动态优化初始点标签,以确保损失函数中涉及的标签尽可能准确。该方法的基本假设是,由于模型已经学习了关键的LLC知识,目前选取的样本点应该大部分是准确的,离群值的比例很小,因此可以使用一个类别的层次向量来表示该类别的最典型特征。

我们可以计算每个点与相应的类层次向量之间的相似度,当相似度小于指定阈值时,将该点视为假标签。因此,这一点将不涉及计算损失函数。该方法的优点是可以在没有任何成本的情况下,利用模型本身的输出来提高点标签的置信度,并且随着不断的训练,优化能力会稳步提高。

最终大白话:每个类别求平均向量,某点与相应的类层次向量之间的相似度<指定阈值时,不计算损失。

知识探索机制  (针对HLS中的fe: 高分知识)

这个部分是为了学习高分知识,但是没有数据,这个知识怎么来呢?

利用高置信度的点标签可以进一步优化fb的LLC知识,但fe需要注入新的知识进行知识进化。因此,我们提出该模型可以在没有额外成本的情况下,根据其输出概率将LLC知识发展为HLS知识。

具体来说,我们采用基于概率的KEM实现知识探索,将有限的点标签逐步扩展为伪标签,使模型在训练过程中自动挖掘新的HR信息。我的理解,应该就是在已获取类别的点周围产生8个临近点,如果它们还没标记,则考虑:预测的类别与中心点是否相同,且概率是否大于某个阈值,如果同时满足则也赋予这个点这个类别,如果不满足就空着。(这样最终会不会有空着的呢?)

知识动态交互

我们需要及时对LLC知识进行复习和巩固,以保证模型既能学习进阶知识,又能保留基础知识。否则,它将无法适应复杂的连续学习场景。因此,我们提出了LLC和HLS知识的知识动态交互。

在HLS训练中,fb用于优化LLC知识,fe用于挖掘HLS知识。两个分类器的知识是相互独立的。如果只有两个分类器独立约束,则不可能保证模型同时具有LLC和HLS信息。因此,我们也对fb和fe应用一致的正则化约束,实现LLC和HLS知识的相互学习。训练时,通过损失函数使它俩相似。在预测阶段,我们将两个分类器的预测概率图平均作为最终输出概率。上述方法使模型在学习HLS知识的同时,保护旧知识(LLC知识)不被新知识覆盖,保证最终的分类结果具有LR和HR特征的优势。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值