基于SAM的光学遥感影像与地图数据变化检测

CHANGE DETECTION BETWEEN OPTICAL REMOTE SENSING IMAGERY AND MAP DATA VIA SEGMENT ANYTHING MODEL (SAM)

我们探讨了两个关键遥感数据源:光学高分辨率图像和OpenStreetMap (OSM)数据之间的无监督多模态变化检测。我们提出了两种利用SAM来检测土地覆盖变化的策略。第一种在一般情况下检测土地覆盖的变化,而第二种战略的目标是检测在背景下出现的新的土地覆盖物体。(这两种方法要同时用,而不是一个方法)

(a)在没有提示的情况下通过比较实例的形状来检测土地覆盖的变化。

(b)根据实例地图提示检测土地覆盖的变化。

方法1:无提示

如图1-(a)所示,第一种方法让SAM对光学图像中的所有内容进行分割,生成其分割图。同时,我们在栅格化的OSM数据上应用连接分量标记(CCL)算法生成其实例映射。该过程将光学图像和OSM数据在同一域(我们称之为分割域)内对齐,从而消除它们之间的模态差异。随后,为了从获得的分割图和实例图中检测土地覆盖的变化,我们认为如果发生变化事件,两个土地覆盖对象应该具有不同的形状。这样,就可以通过比较同一位置两个实例的面积、纵横比等形状属性来获得土地覆盖的变化。

但是,SAM的掩模没有类别信息,每个掩模可能不能代表一个完整的土地覆盖实例。例如,一座建筑可能由几个掩模组成。因此,我们提出了一种以OSM数据实例为指导的分层聚合方法。具体来说,对于OSM数据中的每个实例,我们在分割映射中找到与之有交集的所有掩码,并从实例中心向外迭代地合并这些掩码。在每次合并操作之后,我们计算合并后的掩码与实例的重叠率。如果在合并过程中重叠率超过设定的阈值,则认为实例未改变,否则认为实例已更改。

方法2:实例映射提示

上述策略可以有效地检测两个实例发生变化的情况。然而,当新的土地覆盖对象出现在土地覆盖背景中时,它会遇到困难。例如,在OSM数据上,某一大片区域是植被,而在光学图像中出现了建筑物。在这种情况下,上述策略将整个背景区域视为不变,并且无法检测到新兴建筑。因此,我们提出了一种策略,该策略采用OSM数据中的实例作为SAM的提示。如图1-(b)所示,我们可以使用OSM数据的背景实例来指导SAM的分割,这些实例可以从OSM数据的图例中获得,以框或掩码提示的形式。在这种情况下,SAM一般会对光学图像中的背景进行分割。出现在背景中的陆地覆盖物体将被视为异常,因此不会被分割出来。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值