LoveDA: 遥感土地覆盖数据集的领域自适应语义分割

引入了土地覆盖域自适应语义分割(LoveDA)数据集来推进语义和可转移学习。LoveDA数据集包含来自三个不同城市的5987张高分辨率图像和166768个带注释的对象。与现有数据集相比,LoveDA数据集包含两个领域(城市和农村),这带来了相当大的挑战,因为:1)多尺度对象;2)复杂背景样本;3)不一致的类分布。LoveDA数据集既适用于土地覆盖语义分割,也适用于无监督域自适应(UDA)任务。因此,我们对LoveDA数据集进行了11种语义分割方法和8种UDA方法的基准测试。为了应对这些挑战,还开展了一些探索性研究,包括多尺度架构和策略、额外的背景监督和伪标签分析。代码和数据可在https://github.com/Junjue-Wang/LoveDA上获得。(仅有南京市

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值