1 单因素方差分析
1.1 单因素方差分析的基本原理
单因素方差分析用于探讨一个自变量是否对一个因变量有显著影响,即考察自变量的不同水平是否会对因变量带来显著差异。这种自变量通常是分类或有序变量。
单因素方差分析的基本原理基于方差的可分解性,认为因变量的变化是由自变量和随机因素共同作用的结果。因此,总离差平方和(SST)可以分解为组间离差平方和(SSR)和组内离差平方和(SSE)。组间离差反映了不同自变量水平对因变量的影响,而组内离差则代表随机因素的影响。通过比较两者的差异,判断自变量是否对因变量具有显著影响。即:
S
S
T
=
S
S
R
+
S
S
E
SST = SSR + SSE
SST=SSR+SSE
SST的数学表达式为:
S
S
T
=
∑
i
=
1
k
∑
j
=
1
n
i
(
x
i
j
−
x
‾
)
2
SST = \sum\limits_{{\text{i}} = 1}^k {\sum\limits_{j = 1}^{{n_i}} {{{({x_{ij}} - \overline x )}^2}} }
SST=i=1∑kj=1∑ni(xij−x)2
SST为因变量的总离差平方和;
k为自变量的水平数;
x
i
j
{x_{ij}}
xij为自变量第i个水平下的第j个样本值;
n
i
{n_i}
ni为自变量第i个水平下的样本量;
x
‾
\overline x
x为自变量均值;
总离差平方和(SST)反映的是全部数据总的波动程度。
SSR的数学表达式为:
S
S
R
=
∑
i
=
1
k
∑
j
=
1
n
i
(
x
i
‾
−
x
‾
)
2
SSR = \sum\limits_{{\text{i}} = 1}^k {\sum\limits_{j = 1}^{{n_i}} {{{(\overline {{x_i}} - \overline x )}^2}} }
SSR=i=1∑kj=1∑ni(xi−x)2
SSR为因变量的组间离差平方和;
k为自变量的水平数;
x
i
‾
\overline {{x_i}}
xi为自变量第i个水平下的因变量样本均值;
n
i
{n_i}
ni为自变量第i个水平下的样本量;
x
‾
\overline x
x为自变量均值;
组间离差平方和(SSR)是各自变量水平的均值与总体均值之间离差的平方和,反映了自变量不同水平对因变量的影响。在方差分析中,研究的核心目标是希望SSR值越大越好,因为这意味着自变量不同水平对因变量的影响显著,表明自变量对因变量产生不同影响的可能性更大。SSR越大,说明自变量对因变量的解释力越强。
SSE的数学表达式为:
S
S
E
=
∑
i
=
1
k
∑
j
=
1
n
i
(
x
i
j
−
x
i
‾
)
2
SSE = \sum\limits_{{\text{i}} = 1}^k {\sum\limits_{j = 1}^{{n_i}} {{{({x_{ij}} - \overline {{x_i}} )}^2}} }
SSE=i=1∑kj=1∑ni(xij−xi)2
组内离差平方和(SSE)表示每个样本数据与其所在组均值之间离差的平方和,反映了自变量之外其他因素对因变量的影响,主要与抽样误差相关。在方差分析中,研究者希望将SSE的影响降到最低,即SSE越小,说明随机误差越小,因变量的变化更多地由自变量的不同水平引起。减少SSE有助于更清晰地判断自变量对因变量的影响。
当总离差平方和(SST)固定时,若组内离差平方和(SSE)减小,组间离差平方和(SSR)就会增大,这表明因变量的总变异更可能由自变量引起。然而,需要考虑样本量的影响。自变量的水平数通常有限,即使存在组间差异,但由于水平数少,SSR可能较小;而被试数量可能很大,组内差异虽小,但因样本量大,SSE可能变得很大。因此,单纯比较SSE和SSR的大小,无法准确判断自变量对因变量的影响是否显著。
正确的方法是消除样本量对离差平方和的影响,将它们分别除以各自的自由度,计算出均方(Mean Square,MS),然后再进行比较。离差平方和除以自由度得到的均方实际上就是方差,因此我们比较的是两个方差的差异。通过构建方差比值作为统计量,可以检验自变量和随机误差对因变量的影响。这个方差比值服从F分布,我们用F表示方差分析的统计量,因此方差分析也称为F检验,其公式为:
F
=
S
S
R
/
(
k
−
1
)
S
S
E
/
(
n -
k
)
=
M
S
R
M
S
E
F{\text{ = }}\frac{{SSR/(k - 1)}}{{SSE/({\text{n - }}k)}} = \frac{{MSR}}{{MSE}}
F = SSE/(n - k)SSR/(k−1)=MSEMSR
n
n
n为样本总量;
k
−
1
k - 1
k−1为SSR的自由度;
n
−
k
n - k
n−k为SSE的自由度;
MSR为平均组间平方和;
MSE为平均组内平方和,F~F(k-1,n-k)。
当F值小于1时,表明数据的总变异中,分组之间的差异占比很小,大部分变异是由实验误差和个体差异引起的。这意味着自变量对因变量没有显著影响。如果 F等于1,则说明组间差异和组内差异相当,实验处理之间的差异不明显。当F大于1且对应的概率值小于设定的显著性水平 α 时,表示自变量对因变量的影响在统计学上达到了显著性水平。
1.2 单因素方差分析的基本步骤
(1)前提条件分析
操作:检验异常值和正态性:分析>描述性统计>探索
方差齐性检验:分析>比较平均值>单因素ANOVA>选项>方差齐性检验
单因素方差分析有下列几个条件要满足:
①因变量必须是连续变量;
②因变量的观测值不应有明显异常值;
③自变量至少需有两个或以上的分类水平;
④各水平观测值的误差方差需保持齐性;
⑤各水平间的观测值应相互独立;
⑥各水平的观测值应服从正态分布。
判断单因素方差分析的条件时,可以采取以下方法:
①因变量和自变量:通过观察数据,确认因变量为连续性数据,自变量具有至少两个分类水平;
②异常值:利用探索分析中的箱图检查因变量的观测值是否存在明显异常值;
③独立性:通常通过德宾-沃森(Durbin-Watson)检验来评估,但需谨慎对待;独立性也与研究设计密切相关,若设计得当,且研究者确认观测值之间无相互影响,则可直接认定满足独立性假设;
④正态性:通过夏皮洛-威尔克(Shapiro-Wilk)检验判断因变量的分布是否接近正态。对于大样本,方差分析对非正态分布的要求较宽松;
⑤方差齐性:可使用莱文(Levene)检验来评估各组间的方差是否齐性。
(2)F检验
操作:分析>比较平均值>单因素ANOVA>选项>方差齐性(描述、平均值图),方差不齐性(布朗-福赛斯或韦尔奇)
单因素方差分析(ANOVA)又称F检验,利用F统计量来判断不同组别间的均值是否存在显著差异。设自变量A具有
p
p
p个水平,原假设
H
0
{H_0}
H0表明各水平的总体均值相等,即
μ
1
=
μ
2
=
⋯
=
μ
p
{\mu_1} = {\mu_2} = \cdots = {\mu_p}
μ1=μ2=⋯=μp,或可理解为自变量A对因变量的处理效应为零。若满足方差齐性,SPSS将自动计算F统计量及其对应的
p
p
p值;如果方差不齐,仍需进行方差分析,则可以采用韦尔奇(Welch)或布朗-福赛斯(Forsythe)检验,并计算相应的统计量和
p
p
p值。
(3)均值两两比较
如果F检验结果显示差异不显著,意味着自变量对因变量没有显著影响,方差分析到此为止。然而,若F检验结果显著,则说明自变量对因变量有显著影响,且至少存在一对均值之间的显著差异。由于F检验无法确定具体的差异来源,因此需要进一步进行均值比较。这可以通过事后检验(Post Hoc Test)进行,即事后多重比较(Multiple Comparison Procedures);或使用系统提供的对比(Contrast)命令来分析均值间的具体差异。
1)事后多重比较
操作:分析>比较平均值>单因素ANOVA>事后比较>……
比较是逐对比较不同水平下因变量的均值,以确定哪对均值间存在显著差异,哪对没有差异。事后多重比较是一种在F检验表明显著性差异后才进行的探索性均值比较。SPSS提供了两类多重比较方法:
①方差齐性情况下:包括LSD方法、Bonferroni方法、Tukey方法、Scheffe方法和S-N-K方法等多种方法。
②方差不齐性情况下:主要有Tamhane’s T2、Dunnett’s T3、Games-Howell和Dunnett’s C方法等。
2)先验对比检验
操作:分析>比较平均值>单因素ANOVA>对比>……
与事后多重比较的探索性方法不同,先验对比检验是指研究者在数据分析之前就已设定了特定的比较计划。例如,在有4个水平的自变量中,研究者可能只关心水平1与水平3的差异,或水平1和4与水平2和3的差异,甚至水平2和4与水平1和3之间的差异。事后多重比较的目的是对所有水平之间进行两两比较,而先验对比则允许研究者比较不同水平的组合。先验对比其实是对各水平均值线性组合结果的分析,假设四个水平的均值分别为
x
ˉ
1
,
x
ˉ
2
,
x
ˉ
3
,
x
ˉ
4
{\bar x_1},{\bar x_2},{\bar x_3},{\bar x_4}
xˉ1,xˉ2,xˉ3,xˉ4,则四者的线性组合是:
y
=
β
1
x
1
‾
+
β
2
x
2
‾
+
β
3
x
3
‾
+
β
4
x
4
‾
y = {\beta _1}\overline {{x_1}} + {\beta _2}\overline {{x_2}} + {\beta _3}\overline {{x_3}} + {\beta _4}\overline {{x_4}}
y=β1x1+β2x2+β3x3+β4x4
如果令
β
1
=
1
,
β
2
=
1
,
β
3
=
−
1
,
β
4
=
−
1
{\beta _1} = 1,{\beta _2} = 1,{\beta _3} = - 1,{\beta _4} = - 1
β1=1,β2=1,β3=−1,β4=−1,方程变为
y
=
(
x
ˉ
1
+
x
ˉ
2
)
−
(
x
ˉ
3
+
x
ˉ
4
)
y = ({\bar x_1} + {\bar x_2}) - ({\bar x_3} + {\bar x_4})
y=(xˉ1+xˉ2)−(xˉ3+xˉ4),若此时假设y=0,就相当于对
x
ˉ
1
,
x
ˉ
2
{\bar x_1},{\bar x_2}
xˉ1,xˉ2与
x
ˉ
3
,
x
ˉ
4
{\bar x_3},{\bar x_4}
xˉ3,xˉ4两组的均值差异进行比较。
如果令
β
1
=
1
,
β
2
=
0
,
β
3
=
−
1
2
,
β
4
=
−
1
2
{\beta _1} = 1,{\beta _2} = 0,{\beta _3} = - \frac{1}{2},{\beta _4} = - \frac{1}{2}
β1=1,β2=0,β3=−21,β4=−21,方程变为
y
=
x
ˉ
−
(
x
ˉ
3
+
x
ˉ
4
)
2
y = \frac{{\bar x - ({{\bar x}_3} + {{\bar x}_4})}}{2}
y=2xˉ−(xˉ3+xˉ4),若此时假设
y
=
0
y = 0
y=0,就相当于对
x
ˉ
1
{\bar x_1}
xˉ1与
x
ˉ
3
,
x
ˉ
4
{\bar x_3},{\bar x_4}
xˉ3,xˉ4两者的均值差异进行比较。
所以只要对
k
k
k个水平的自变量的
k
k
k个系数进行相应设置,并且保证
∑
i
=
1
k
β
i
=
0
\sum\limits_{i = 1}^k {{\beta _i}} = 0
i=1∑kβi=0,就可以对各个水平间的任意组合进行检验。
3)趋势检验
在单因素方差分析中,除了进行均值的两两比较外,还可以进行趋势检验,以分析自变量水平变化对因变量的系统性影响。特别是在自变量为定序变量时,趋势检验能揭示因变量是否随着自变量的变化而表现出某种趋势。
2 多因素方差分析
2.1 多因素方差分析的基本原理
多因素方差分析用于评估两个或多个自变量对因变量的显著性影响,其中两因素方差分析是一个特例。该分析方法不仅能够评估每个自变量对因变量的独立效应,还可以考察自变量之间的交互作用对因变量的影响,帮助研究者识别出最佳的自变量组合。
在两因素方差分析中,因变量的总方差(SST,总离差平方和)可分解为三个部分:自变量A的独立作用、自变量B的独立作用,以及A和B的交互作用,外加误差部分。假设自变量A有k个水平,自变量B有r个水平,则SST的分解公式为:
S
S
T
=
S
S
A
+
S
S
B
+
S
S
A
B
+
S
S
E
SST = SSA + SSB + SSAB + SSE
SST=SSA+SSB+SSAB+SSE
SST为因变量的总离差平方和;
SSA、SSB分别为自变量A、B独立作用引起的变差;
SSAB为自变量A和B交互作用引起的变差;
SSE为随机因素引起的变差。
S
S
T
=
∑
i
=
1
k
∑
j
=
1
r
∑
k
=
1
n
i
j
(
x
i
j
k
−
x
‾
)
2
SST = \sum\limits_{i = 1}^k {\sum\limits_{j = 1}^r {\sum\limits_{k = 1}^{{n_{ij}}} {{{({x_{ijk}} - \overline x )}^2}} } }
SST=i=1∑kj=1∑rk=1∑nij(xijk−x)2
n
i
j
{n_{ij}}
nij为因素A第i个水平和因素B第j个水平下的样本观测值的个数;
x
i
j
k
{x_{ijk}}
xijk为因素A第i个水平和因素B第j个水平下的第k个观测值。
S
S
A
=
∑
i
=
1
k
∑
j
=
1
r
n
i
j
(
x
i
‾
A
−
x
‾
)
2
SSA = \sum\limits_{i = 1}^k {\sum\limits_{j = 1}^r {{n_{ij}}{{({{\overline {{x_i}} }^A} - \overline x )}^2}} }
SSA=i=1∑kj=1∑rnij(xiA−x)2
n
i
j
{n_{ij}}
nij为因素A第i个水平和因素B第j个水平下的样本观测值的个数;
x
ˉ
i
A
\bar x_i^A
xˉiA为因素A第i个水平下因变量的均值。
S
S
B
=
∑
i
=
1
r
∑
j
=
1
k
n
i
j
(
x
j
‾
B
−
x
‾
)
2
SSB = \sum\limits_{i = 1}^r {\sum\limits_{j = 1}^k {{n_{ij}}{{({{\overline {{x_j}} }^B} - \overline x )}^2}} }
SSB=i=1∑rj=1∑knij(xjB−x)2
n
i
j
{n_{ij}}
nij为因素A第i个水平和因素B第j个水平下的样本观测值的个数;
x
ˉ
j
B
\bar x_j^B
xˉjB为因素B第j个水平下因变量的均值。
S
S
E
=
∑
i
=
1
k
∑
j
=
1
r
∑
k
=
1
n
i
j
(
x
i
j
k
−
x
i
j
‾
A
B
)
2
SSE = \sum\limits_{i = 1}^k {\sum\limits_{j = 1}^r {\sum\limits_{k = 1}^{{n_{ij}}} {{{({x_{ijk}} - {{\overline {{x_{ij}}} }^{AB}})}^2}} } }
SSE=i=1∑kj=1∑rk=1∑nij(xijk−xijAB)2
x
i
j
k
{x_{ijk}}
xijk为因素A第i个水平和因素B第j个水平下的第k个观测值;
x
ˉ
i
j
A
B
\bar x_{ij}^{AB}
xˉijAB为因素A第i个水平和因素B第j个水平下因变量的均值。
则最后计算因素A和因素B各自主效应以及两者的交互效应的检验统计量F如下:
F
A
=
S
S
A
/
(
k
−
1
)
S
S
E
/
k
r
(
l
−
1
)
=
M
S
A
M
S
E
{F_A} = \frac{{SSA/(k - 1)}}{{SSE/kr(l - 1)}} = \frac{{MSA}}{{MSE}}
FA=SSE/kr(l−1)SSA/(k−1)=MSEMSA
F
B
=
S
S
B
/
(
r
−
1
)
S
S
E
/
k
r
(
l
−
1
)
=
M
S
B
M
S
E
{F_B} = \frac{{SSB/(r - 1)}}{{SSE/kr(l - 1)}} = \frac{{MSB}}{{MSE}}
FB=SSE/kr(l−1)SSB/(r−1)=MSEMSB
F
A
B
=
S
S
A
B
/
(
r
−
1
)
(
k
−
1
)
S
S
E
/
k
r
(
l
−
1
)
=
M
S
A
B
M
S
E
{F_{AB}} = \frac{{SSAB/(r - 1)(k - 1)}}{{SSE/kr(l - 1)}} = \frac{{MSAB}}{{MSE}}
FAB=SSE/kr(l−1)SSAB/(r−1)(k−1)=MSEMSAB
l
l
l为每小组样本量;
MSA和MSB为平均组间平方和;
MSE为平均组内平方和;
k
−
1
k - 1
k−1为SSA的自由度;
r
−
1
r - 1
r−1为SSB的自由度;
k
r
(
l
−
1
)
kr\left( {l - 1} \right)
kr(l−1)为SSE的自由度。
2.2 多因素方差分析的基本步骤
(1)前提条件检验
操作:检验异常值和正态性:分析>描述性统计>探索
方差齐性检验:分析>一般线性模型>单变量
做多因素方差分析有下列几个条件要满足:
①因变量为连续性变量:因变量必须是可度量的连续变量,如考试成绩、收入等;
②自变量为离散分类变量:自变量应具有至少两个或更多水平,通常为分类变量或有序分类数据;
③无明显异常值:因变量的观测值中不能存在显著异常值,以免影响分析结果的可靠性;
④观测值独立性:各组的观测值需相互独立,避免组间的干扰效应;
⑤正态分布:每一组内的因变量观测值应近似服从正态分布;
⑥方差齐性:每一组的因变量观测值应具有相同或相近的方差,即方差齐性假设需满足。
(2)F检验
操作:分析>一般线性模型>单变量>选项>描述统计
假设自变量A的水平数为
p
p
p个,自变量B的水平数为
q
q
q个,则该两因素方差分析的原假设
H
0
{H_0}
H0主要有三个:
①自变量A各水平的总体均值相等,即
μ
1
=
μ
2
=
⋯
=
μ
p
{\mu _1} = {\mu _2} = \cdots = {\mu _p}
μ1=μ2=⋯=μp,或写为:自变量A的处理效应(主效应)为0,即
α
j
=
0
{\alpha _j} = 0
αj=0。
②自变量B各水平的总体均值相等,即
μ
1
=
μ
2
=
⋯
=
μ
p
{\mu _1} = {\mu _2} = \cdots = {\mu _p}
μ1=μ2=⋯=μp,或写为:自变量B的处理效应(主效应)为0,即
β
k
=
0
{\beta _k} = 0
βk=0。
③自变量A和自变量B的交互效应为0,即
(
a
β
)
j
k
=
0
{(a\beta )_{jk}} = 0
(aβ)jk=0。
在多因素方差分析中,优先分析交互效应是关键步骤。如果两个或多个自变量之间存在显著的交互作用,这意味着不同自变量水平的组合对因变量产生了复杂的共同影响。以下是对交互效应和主效应的处理逻辑:
①交互效应显著:当自变量A和自变量B之间的交互作用显著时,这表明A和B在不同水平的组合下对因变量的影响不同。此时,无论A或B的单独主效应是否显著,都无需进一步分析主效应,而是要转向分析简单效应。简单效应分析是分别研究自变量A在自变量B的每个水平下的效应,以及自变量B在自变量A的每个水平下的效应。
②交互效应不显著:如果交互作用不显著,则表示A和B的组合对因变量的影响是独立的。此时,需要继续分析A和B的主效应。当某个自变量的主效应显著时,就说明该自变量的各个水平对因变量有显著差异,接下来可进行类似单因素方差分析的事后检验(如LSD、Bonferroni等)以比较各水平间的差异。
(3)主效应分析
1)事后多重比较
操作:分析>一般线性模型>单变量>事后比较>……
在多因素方差分析中,如果各组被试人数相等,则可以通过“事后多重比较”来进行均值间的比较,这种方法与单因素方差分析中的事后多重比较相似,主要分为两类:方差相等时使用的方法和方差不相等时使用的方法。当方差相等时,可以直接通过描述统计和事后多重比较两个菜单命令的结果来进行分析。然而,与单因素方差分析不同的是,在多因素方差分析中,系统对方差不齐性的处理方法不可用。
如果各组被试人数不相等,则在比较均值时,应首先估算边际均值,然后再进行均值比较。边际均值是针对不平衡设计的一种方法,它通过调整组间不等的样本量来减少误差的影响,使得均值比较更加准确。
2)对比检验
①比较各水平与总均值的差异:研究某个因素的各水平与总体均值的差异,判断该水平是否显著偏离总体水平;
②比较某个水平与其他几个水平的均值差异:例如,研究某个特定水平与其他几个水平之间的均值差异,确定该水平是否显著不同于其他水平的平均效果;
③比较某两个水平与其他两个水平的均值差异:在多水平变量中,可能会关注两个特定水平与其他组合水平的均值差异,检验是否存在显著不同。
SPSS 提供的均值对比方法:
①简单对比(Simple Contrast):可用于比较某个特定水平与总均值或某个参考水平;
②偏差对比(Deviation Contrast):适合比较每个水平与整体均值的偏差;
③重复对比(Repeated Contrast):用于比较相邻的水平;
④差异对比(Difference Contrast):可用于比较每个水平与之前水平的均值差异;
⑤自定义对比(Custom Contrast):当需要比较复杂组合时,用户可以自定义不同水平之间的对比方式,例如将两个水平的均值与另外两个水平的均值进行比较。
3)趋势检验
在SPSS的“对比”菜单中,有一个趋势检验方法称为“多项式”命令。多项式检验用于分析自变量不同水平对因变量的影响趋势,能够比较线性、二次和三次效应等,广泛应用于多项式趋势预测。
当自变量的水平为k时,系统将提供k−1个多项式趋势检验。例如,若k=3,系统会提供线性(一阶)效应和二次效应的检验。这种设置使研究者能够有效识别因变量随自变量水平变化的趋势,并判断其显著性。通过这种分析,研究者可以深入理解不同水平之间的关系及其对因变量的潜在影响。
(4)交互效应分析
1)交互作用图形分析
自变量之间的交互作用可以通过图形直观呈现。如果自变量之间没有交互作用,则各水平对应的直线斜率将保持平行,显示出一致的关系;若存在交互作用,直线斜率则会不相等,甚至可能出现交叉现象。在这种情况下,交互作用的显著性仍需通过统计检验结果进一步确认。
2)简单效应分析
若检测到交互效应,则需要进行简单效应分析。这种分析方法关注于一个自变量在另一个自变量各水平下的影响差异。若这些影响存在显著差异,则可以认为交互作用确实存在。
3 协方差分析
3.1 协方差分析的基本原理
协方差分析是一种统计方法,旨在将难以人为控制的因素视为协变量,并在排除这些协变量对因变量影响的条件下,评估自变量对因变量的作用,从而实现更准确的自变量评价。当协变量为一个时,称为一元协方差分析;当协变量为两个或多个时,称为多元协方差分析。
协方差分析的基本思想是在方差分析的框架内,考虑协变量的影响。它认为因变量的总变差受四个方面的影响:自变量的独立作用、自变量之间的交互作用(当自变量为两个或更多时)、协变量的作用以及随机因素的作用。协方差分析在剔除协变量的影响后,进一步分析自变量对因变量的影响。以一元协方差分析为例,协方差分析中总的离差平方和表示为:
S
S
T
=
S
S
A
+
S
S
C
+
S
S
E
SST = SSA + SSC + SSE
SST=SSA+SSC+SSE
SST为因变量的总离差平方和;
SSA为自变量A独立作用引起的变差;
SSC为协变量C引起的变差;
SSE为随机因素引起的变差。 协方差分析仍然采用F检验,其原假设
H
0
{H_0}
H0为自变量的不同水平下各总体平均值没有显著差异。F统计量的计算公式为:
F
A
=
S
S
A
/
d
f
A
S
S
E
/
d
f
E
=
M
S
A
M
S
E
{F_A} = \frac{{SSA/d{f_A}}}{{SSE/d{f_E}}} = \frac{{MSA}}{{MSE}}
FA=SSE/dfESSA/dfA=MSEMSA
F
C
=
S
S
C
/
d
f
C
S
S
E
/
d
f
E
=
M
S
C
M
S
E
{F_C} = \frac{{SSC/d{f_C}}}{{SSE/d{f_E}}} = \frac{{MSC}}{{MSE}}
FC=SSE/dfESSC/dfC=MSEMSC
d
f
A
d{f_A}
dfA是SSA的自由度;
d
f
C
d{f_C}
dfC是SSC的自由度;
d
f
E
d{f_E}
dfE是SSE的自由度。
在协方差分析中,计算得到的F统计量遵循F分布,SPSS会自动生成F值及相应的概率值
p
p
p。若自变量A的F值对应的
p
p
p值小于显著性水平
α
\alpha
α,则表明自变量A的不同水平对因变量有显著影响。相似地,如果协变量C的F值的
p
p
p值小于
α
\alpha
α,则说明协变量C的不同水平也对因变量有显著影响。
3.2 协方差分析的基本步骤
(1)前提条件检验
操作:检验回归斜率是否相等:分析>一般线性模型>单变量>…>模型
因变量误差方差齐性检验:分析>一般线性模型>单变量>选项>方差齐性分析
检验因变量误差异常和正态性:分析>一般线性模型>单变量>保存>标准化:分析>描述性统计>探索>
协方差分析需要满足的条件较多,包括:
①因变量:必须是连续性变量;
②自变量:需至少具有两个水平的分类离散数据;
③协变量:必须是连续变量;
④测量精度:协变量的测量应无误差;
⑤独立性:各组内的观测值需相互独立;
⑥线性关系:协变量与因变量之间应存在线性关系,可以通过散点图进行验证;
⑦平行回归:各组协变量与因变量的回归线需平行,即斜率相等,表示自变量与协变量之间不存在交互作用;
⑧残差分析:各组因变量的残差应无异常值;
⑨方差齐性:各组因变量的残差应具有齐性方差;
⑩正态分布:各组因变量的残差应呈正态分布。
(2)F检验
操作:分析>一般线性模型>单变量
在协方差分析中,因变量受到自变量(控制变量)的独立效应、自变量的交互效应、协变量的影响以及随机因素的影响。协方差分析的主要目的是在剔除协变量影响后,分析自变量对因变量的作用。
在一元协方差分析中,考虑协变量的情况下,原假设
H
0
{H_0}
H0可以表示为在控制协变量影响下,自变量A的各水平总体均值相等,即
μ
1
=
μ
2
=
⋯
=
μ
p
{\mu_1} = {\mu_2} = \cdots = {\mu_p}
μ1=μ2=⋯=μp,或者可以写为自变量A的处理效应为0,即
α
j
=
0
{\alpha_j} = 0
αj=0。
对于两因素协方差分析,原假设同样侧重于协变量的影响,其内容为在剔除协变量的影响后,自变量的主效应和交互效应均不显著。
(3)均值比较
操作:分析>一般线性模型>单变量>EM平均值>…比较主效应LSD
在确认已剔除协变量对因变量的影响后,如果自变量各水平的因变量总体均值存在显著差异,则需进行均值比较。对于单因素方差分析,可以直接比较均值。而在多因素方差分析中,首先需判断交互效应的显著性。如果交互效应显著,则应进行简单效应分析,聚焦于某一自变量在另一个自变量各水平下的影响;如果交互效应不显著,则应主要分析主效应,即自变量对因变量的独立影响。这一过程确保了对因变量的评估更加精确和全面。
4 重复测量方差分析
4.1 重复测量方差分析概述
操作:点击“分析” > “一般线性模型” > “重复测量”
EMMEANS=TABLES(降压药*时间)COMPARE(时间或降压药)ADJ(BONFERRONI)用于进行重复测量方差分析,比较不同时间点或降压药对因变量的影响。重复测量是对同一组观察对象进行多次测量,获得的重复测量数据可以分为单因素和多因素重复测量方差分析。这种方法不仅能够评估测量指标随次数或时间变化的情况,还能减小个体差异的影响,提高研究效率。
然而,重复测量也有缺点,如练习效应和疲劳效应。练习效应指的是被试因多次参与实验而逐渐熟悉实验情境,可能导致成绩提高;而疲劳效应则是随着实验次数增加,被试感到疲倦或厌倦,导致成绩下降。
在进行重复测量方差分析时,理解“主体内变量”和“主体间变量”至关重要。主体间变量指不同被试接受不同处理水平,而主体内变量是同一组被试接受所有处理水平。正确设置主体内变量的因子级别数,通常与重复测量的次数相同,是成功实施重复测量方差分析的关键。
4.2 重复测量方差分析的基本步骤
(1)前提条件检验
重复测量方差分析需要满足的假设有:
①因变量:必须是唯一且为连续变量;
②主体内因素:需具有三个或以上的水平;
③异常值:在不同处理条件下,因变量应无极端异常值;
④独立性:不同处理水平下的个体应相互独立;
⑤正态性:各处理水平下的总体需服从正态分布;
⑥方差齐性:不同处理水平的总体方差应相同;
⑦球形度假设:即处理差异方差齐性假设,要求任意两个处理水平之间的协方差应等于其方差均值减去一个常数。
球形度假设是重复测量方差分析中的一个重要前提条件。SPSS使用莫奇来(Mauchly)检验法来评估这一假设:
p > 0.05:表明多次测量的方差没有显著差异,或者不同次测量之间的相关系数差异不显著,此时满足球形度假设;
p < 0.05:表明多次测量的方差差异较大,或者不同次测量之间的相关系数存在显著差异,此时不满足球形度假设,这可能导致统计推论的错误率增加;
如果球形度假设不成立,仍使用单变量检验时,需对与被试内变量相关的F统计量的自由度进行校正。常用的校正方法包括:
格林豪斯-盖斯勒(Greenhouse-Geisser)
辛-费德特(Huynh-Feldt)
下限(Lower-bound)
(2)F检验
在重复测量方差分析中,因变量受多种效应影响,包括主体内因素的独立作用、主体间被试的独立作用、变量间的交互作用以及随机因素的影响。这些效应的显著性取决于具体分析的设计:
1)单因素重复测量方差分析:其原假设与单因素方差分析类似,表示为
H
0
{H_0}
H0:主体内变量A各水平的总体均值相等,即
μ
1
=
μ
2
=
⋯
=
μ
p
{\mu _1} = {\mu _2} = \cdots = {\mu _p}
μ1=μ2=⋯=μp,或者自变量A的处理效应为0,即
α
j
=
0
{\alpha _j} = 0
αj=0;
2)多因素重复测量方差分析:在这种情况下,原假设与多因素方差分析的形式相似。例如,在重复测量的两因素方差分析中,原假设
H
0
{H_0}
H0通常表示为:在剔除随机因素的影响后,自变量A和B对因变量的主效应以及它们的交互效应均不显著。
①自变量A各水平的总体均值相等,即
μ
1
=
μ
2
=
⋯
=
μ
p
{\mu _1} = {\mu _2} = \cdots = {\mu _p}
μ1=μ2=⋯=μp,或写为:自变量A的处理效应(主效应)为0,即
α
j
=
0
{\alpha _j} = 0
αj=0。
②自变量B各水平的总体均值相等,即
μ
1
=
μ
2
=
⋯
=
μ
p
{\mu _1} = {\mu _2} = \cdots = {\mu _p}
μ1=μ2=⋯=μp,或写为:自变量B的处理效应(主效应)为0,即
β
k
=
0
{\beta _k} = 0
βk=0。
③A和B因素的交互效应为0,即
(
a
β
)
j
k
=
0
{(a\beta )_{jk}} = 0
(aβ)jk=0。这里要求A和B至少有一个为重复测量变量,即主体内变量。
(3)均值比较
如果方差检验结果显示主体内(被试内)因素或主体间(被试间)因素对因变量有显著影响,接下来需要进行均值比较。
①单因素重复测量方差分析:由于此时只有主体内因素,如果发现该因素效应显著,就直接比较不同水平的均值,这类似于单因素方差分析中的事后比较。
②多因素重复测量方差分析:在这种情况下,首先需要判断交互效应是否显著。如果交互效应显著,则进行简单效应分析;如果交互效应不显著,则分析主效应。这一过程与多因素方差分析的步骤相似。