SPSS之方差分析

本文详细介绍了在SPSS软件中如何进行单因素方差分析,包括数据准备、方差齐性检验、多重比较以及多因素方差分析的实际应用案例,探讨了不同变量和交互作用对结果的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SPSS中单因素方差分析功能通过【分析】--【比较平均值】--【单因素ANOVA】实现(注意SPSS单因素方差分析的数据格式为两列:其中一列为所有的实验数据(观测变量),另一列为实验水平的标记(控制变量))。

方差齐性检验。控制变量不同水平下观测变量总体方差无显著差异是方差分析的前提要求之一,因此,在作方差分析前,应先对数据进行方差齐性检验。SPSS单因素方差分析中,方差齐性检验采用了方差同质性检验的方法,其零假设是“各水平下观测变量总体的方差无显著差异”,因此P>α时接受零假设,即方差齐性;反之,方差不齐,说明不能进行方差分析。方差齐性检验通过【分析】--【比较平均值】--【单因素ANOVA】--【选项】--【方差同质性检验】来实现。

多重比较检验。如果控制变量确实对观测变量产生了显著影响,进一步还应确定控制变量的不同水平对观测变量的影响程度如何,其中哪个水平的作用明显区别于其它水平等等,此时就应进行多重比较检验。本次实验主要练习采用LSD方法进行多重比较检验。通过【分析】--【比较平均值】--【单因素ANOVA】--【事后多重比较】--【LSD】来实现。

SPSS中多因素方差分析功能在【分析】--【一般线性模型】--【单变量】中进行单因素方差分析(注意SPSS多因素方差分析的数据格式为多列:其中一列为所有的实验数据(观测变量),其余的列分别为实验水平的标记(控制变量))。

SPSS多因素方差分析中,如果某控制变量的不同水平对观测变量产生显著影响,需进一步对该控制变量各水平间进行多重比较。通过【分析】--【一般线性模型】--【单变量】--【事后多重比较】--【LSD】来实现。

接下来我们将进行实战演练!

单因素方差分析:

利用文件标准木测树数据.sav,选择树高和胸径两变量进行方差分析,分析不同样地间的差异是否显著,如差异显著,进行多从比较。

首先,我们先来看一下标准木测树数据的变量视图(Variable View),变量视图中可以看到数据集中所有字段的Name、Type、Width和Decimals,也可以设置字段的Label、Align、Measure等等。

可以看到,该数据共有7个字段,分别是:[‘编号’,‘样地号’,‘胸径’,‘树高’,‘东西冠幅’,‘南北冠幅’,‘年龄’],所有字段的类型全都属于‘Numeric’数字类型。再来看看数据视图(Data View):该数据集共有95个数据样本。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎曼最初的梦想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值