Pytorch训练YOLOv3

1.因为之前训练过YOLOv8,所以环境就不用重新配了

2.下载YOLOv3代码:YOLOv3-github

下载好v9.5.0版本的代码,解压出来。

3.在解压出来的目录下新建一个文件夹命名为VOCdevkit,再在这个文件夹下面建两个文件夹images和labels,images和labels里面分别包含三个文件夹train、val和test,其实就可以直接把YOLOv8的YOLO格式数据集复制到VOCdevkit里面。images的格式是jpg,labels的格式的txt。

4.前一步过后数据集就放好了,接下来创建一个数据集的配置文件data.yaml,放在data的文件夹里面。(我自己随便取的名字叫voc.yaml,后面训练的时候填的voc.yaml就是这一步得到的yaml文件)

# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
path: E:\fz(yolov3)\yolov3-9.5.0\VOCdevkit
train: E:\fz(yolov3)\yolov3-9.5.0\VOCdevkit\images\train  # 16551 images
val: E:\fz(yolov3)\yolov3-9.5.0\VOCdevkit\images\val  # 4952 images
test: E:\fz(yolov3)\yolov3-9.5.0\VOCdevkit\images\test

# number of classes
nc: 1

# class names
names: [ 'transformer' ]

#path是放置用于训练数据集的根目录
#train是放置训练的图片的路径
#val是放置验证的图片的路径
#test是放置测试的图片的路径
#nc要改为自己所训练的类别个数
#names是自己所训练的类别

5.修改model的配置文件。在models的文件夹里面,想跑哪个模型就修改哪个模型的yaml文件。把nc改为自己要检测的类别个数。

6.修改train.py文件。预训练权重:预训练权重下载

7.直接运行train.py就可以了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值