pytorch——yolov3学习之模型训练
最近在学习yolov3,学长布置了任务,让用yolov3来训练百度识虫的数据集,写这篇文章总结一下最近的学习心得,写一写我在学习过程中踩的坑
数据集地址:https://aistudio.baidu.com/aistudio/datasetdetail/19638
(该数据集使用的是VOC存储方式,由2183张jpeg格式图片构成,其中训练集1693张,验证集245,测试集245张,共有六种昆虫,label数据为xml格式)
- 参数设置
既然要训练模型就要从train.py以及datasets.py入手,首先看train.py里面的设置部分
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=10, help="number of epochs")
parser.add_argument("--batch_size", type=int, default=1, help="size of each image batch")
parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accums before step")
parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file")
parser.add_argument("--data_config", type=str, default="config/my_data.data", help="path to data config file")
parser.add_argument("--pretrained_weights", type=str, help=