pytorch——yolov3学习之模型训练

本文介绍了使用PyTorch训练YOLOv3模型的过程,包括数据集的准备,如将XML标注转换为txt文件,并调整训练参数。作者分享了在训练百度识虫数据集时遇到的问题,如正确设置label_files以匹配图片和标注文件的路径。
摘要由CSDN通过智能技术生成

pytorch——yolov3学习之模型训练

代码来自:https://github.com/eriklindernoren/PyTorch-YOLOv3

最近在学习yolov3,学长布置了任务,让用yolov3来训练百度识虫的数据集,写这篇文章总结一下最近的学习心得,写一写我在学习过程中踩的坑

数据集地址:https://aistudio.baidu.com/aistudio/datasetdetail/19638
(该数据集使用的是VOC存储方式,由2183张jpeg格式图片构成,其中训练集1693张,验证集245,测试集245张,共有六种昆虫,label数据为xml格式)
在这里插入图片描述

  • 参数设置

既然要训练模型就要从train.py以及datasets.py入手,首先看train.py里面的设置部分

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--epochs", type=int, default=10, help="number of epochs")
    parser.add_argument("--batch_size", type=int, default=1, help="size of each image batch")
    parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accums before step")
    parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file")
    parser.add_argument("--data_config", type=str, default="config/my_data.data", help="path to data config file")
    parser.add_argument("--pretrained_weights", type=str, help=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值