在冬天,莫斯科动物园的居民非常无聊,尤其是大猩猩。你决定娱乐他们,带了一个长度为n的排列p到动物园。长度为n的排列是由n个从1到n的不同整数以任意顺序组成的数组。例如,[2,3,1,5,4]是一个排列,但[1,2,2]不是一个排列(2在数组中出现两次),[1,3,4也不是一个排列(n3,但4在数组中出现)。大猩猩有自己的长度为n的排列q。他们建议你计算整数l,r (1 r n)对的数量,使得MEX([p1, Pl+1,,p,]) = MEX([a,9+1,,a])。数列的MEX是数列中缺少的最小正整数。例如,MEX([1,3]) = 2,MEX([5]) = 1, MEX([3,1,2,6]) = 4。你不想拿自己的健康冒险,所以你也不敢拒绝大猩猩。输入第一行包含一个整数n (1 <n<2.105)-排列长度。第二行包含n个整数p1 P2。,Pn (1 <pi Sn)-排列p的元素。第三行包含n个整数q1,92,,an (1 <gi Sn)-排列q的元素。输出打印一个整数-合适的对l和r的数量。
Examples
input
Copy
3
1 3 2
2 1 3
output
Copy
2
input
Copy
7
7 3 6 2 1 5 4
6 7 2 5 3 1 4
output
Copy
16
input
Copy
6
1 2 3 4 5 6
6 5 4 3 2 1
output
Copy
11
题解:
我们假设L,R分别是此时排列p,q1的位置,
那么MEX(1)l,r成立的情况有三种
1.均在L左侧
2.均在R右侧
3.在L,R之间
假设x,y是此时p,q排列的位置
接着考虑MEX = 2的情况。MEX = 2时,说明区间里一定包含1,但不含2,那么2的位置就不能出现在【L,R】之间。设x为序列p中2的位置,y为序列q中2的位置,x<=y, x,y要么同时出现在【1,L-1】一侧,要么同时出现在【R+1,n】一侧,要么一边在【1,L-1】一边在【R+1,n】。
成立的情况只有三种
1.都在L的左边 (L-y)*(n-R+1)
2.都在R的右边 L*(x-R)
3.x在L左边,y在R右边 (L-x)*(y-R)
随着MEX()增大,L,R区间会逐渐增大,或不变,所以要不断更新,
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
#include<vector>
#include<map>
#include<queue>
using namespace std;
#define int long long
const int N = 6e5 + 10;
int p[N],q[N];
int posp[N];
int posq[N];
int mod = 998244353;
int C(int n)
{
return (n+1)*n/2;//区间l == r的情况也要算所以是n*(n-1)/2 + n
}
void solve()
{
int n;
cin >> n;
int ans = 0;
for(int i = 1;i <= n;i++)
{
cin >> p[i];
posp[p[i]] = i;
}
for(int i = 1;i <= n;i++)
{
cin >> q[i];
posq[q[i]] = i;
}
int L = posp[1];
int R = posq[1];
if(L > R)
swap(L,R);
ans += C(L-1);
ans += C(max(0ll,R-L-1));
ans += C(n - R);
for(int i = 2;i <= n;i++)
{
int x = posp[i];
int y = posq[i];
if(x > y)
swap(x,y);
if(y < L)
{
ans += (L - y)*(n - R+1);
}
else if(x > R)
{
ans += L*(x - R);
}
else if(x < L&&y > R)
{
ans += (L - x)*(y - R);
}
L = min(L,x);
R = max(R,y);
}
cout << ans + 1;//+1是整个排列都算一种
}
signed main()
{
int t = 1;
// cin >> t;
while(t--)
{
solve();
}
}