牛客小白月赛61 E - 排队(逆序对+思维)

题意:

给你一个长度为n的序列,求该序列所有排列组合方式中逆序对个数之和。

数据范围:

1 ≤ n ≤ 10^{5}

1 ≤ ai ≤ 10^{5}

思路1:

n!排列后,逆序对总和 = 正序对总和
总数对 = 逆序对 + 正序对 + 相同的对
减去即可

对于序列:2 1 4 3,它的逆序对有2个:(2,1),(4,3);我们把该序列反转一下得到:3 4 1 2,它的正序对有2个:(3,4),(1,2)。所以某个序列的逆序对个数等于反转后正序对的个数

同时该序列反转后得到的是n!个序列中的一个,也就是说,对于 n! 个序列,所有序列的逆序对个数之和等于所有序列的正序对个数之和

要想求 n! 个序列的逆序对之和,只需要求出 n! 个序列正序对+逆序对个数之和后,再除以2即可。

首先考虑一个序列的正序对+逆序对个数之和,就相当于看这个序列里面有多少对数,等于C(n,2);但是本题比较特殊,因为可能有重复的数,而选两个重复的数既不是正序对,也不是逆序对。所以要把选两个重复的数的情况减去,预处理序列每个 a_{i} 出现的次数 cnt[a_{i}],求和为\sum _{i = 1}^{n}C_{cnt[a_{i}]}^{2}

所以1个序列中正序对+逆序对个数之和等于 C(n,2) - \sum _{i = 1}^{n}C_{cnt[a_{i}]}^{2},总共 n! 个序列,再乘以 n!,最后除以 2 。得到的就是 n! 个序列中逆序对的个数之和。

\frac{C_{n}^{2}*\sum _{i = 1}^{n}C_{cnt[a_{i}]}^{2}}{2}

Code1:

#include<bits/stdc++.h>
using namespace std;

#define fi first
#define se second
#define int long long
const int dx[] = { 1,-1,0,0 }, dy[] = { 0,0,1,-1 };

const int N = 1e6+10, M = 3010, INF = 0x3f3f3f3f, mod = 1e9+7;

typedef pair<int, int>PII;

int n,s;
int a[N];
map<int,int>mp;

void solve()
{    
    cin >> n;
    for(int i = 1; i <= n;i++)
    {
        cin >> a[i];
        mp[a[i]]++;                               //记录序列中每个数出现的次数
    }
    
    int ans = 0;
    for(auto it:mp)
    {
        ans = (ans+it.se*(it.se-1)/2)%mod;        //计算一个序列中两数相同的对数:∑C(cnt,2)
    }
    int res = (n*(n-1)/2)%mod  - ans;             //计算一个序列中两数不同的对数:C(n,2)-∑C(cnt,2)
    for(int i = 1; i <= n; i++) res = res*i%mod;  //计算n!个序列的正逆序对个数之和(C(n,2)-∑C(cnt,2))*n!
    
    res = (res*((mod+1)/2)%mod+mod)%mod;          //除以2得到逆序对个数之和
    
    cout << res << endl;
}

signed main()
{
	//int t;
	int t = 1;
	//cin >> t;
	while (t--)
	{
		solve();
	}
	return 0;
}

思路2:

参考博客

求的是 n! 个序列中逆序对的总个数,那么我们考虑每一个逆序对对 n! 个序列的贡献值为多少——

对于一个长度为n的排列组合,如果存在一对 逆序对(x,y)
x在y的前面有 C(n,2)=n*(n-1)/2 种情况,剩余 n-2 个位置全排列 (n-2)!
所以该逆序对的贡献值为(n-2)!*n*(n-1)/2。
那么我们最终答案为:(n-2)!*\frac{n*(n-1)}{2} * 逆序对的个数

实现:我们将序列中每个数 a_{i} 出现的次数用数组 cnt[] 记录,预处理成前缀和的形式。因为 a_{i} 最大为1e5,所以从1遍历到1e5,a_{i} 的逆序对的个数为(cnt[i]-cnt[i-1])*cnt[i-1],求和即为所有逆序对个数。
之后直接套公式,注意取模,因为n*(n-1)/2一定是整数,所以不需要再求2的逆元,直接算即可。

Code2:

#include<bits/stdc++.h>
using namespace std;

#define fi first
#define se second
#define int long long
const int dx[] = { 1,-1,0,0 }, dy[] = { 0,0,1,-1 };

const int N = 1e6+10, M = 3010, INF = 0x3f3f3f3f, mod = 1e9+7;

typedef pair<int, int>PII;

int n;
int a[N],cnt[N];

void solve()
{    
    cin >> n;
    for(int i = 1; i <= n; i++)
    {
        cin >>a[i];
        cnt[a[i]]++;                        //预处理每个数出席的次数
    }
    for(int i = 1; i <= 100000; i++)
        cnt[i] += cnt[i-1];                 //预处理成前缀和
    
    int res = 0;
    for(int i = 1; i <= 100000; i++)        //在1~1e5范围内枚举ai
        res = (res+((cnt[i]-cnt[i-1])*cnt[i-1])%mod)%mod;
    
    for(int i = 1; i <= n-2; i++)res = res*i%mod;   //*(n-2)!
    res = (res*(n-1)*n/2)%mod;                      //*n*(n-1)/2
    
    cout << res << endl;
}

signed main()
{
	//int t;
	int t = 1;
	//cin >> t;
	while (t--)
	{
		solve();
	}
	return 0;
}

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
吐槽:思路一来自集训队的学长tql。题目注意点:

1.注意对分数取模时,不一定都得求逆元,像n*(n-1)/2,因为结果是整数,所以可以先算除不用再求逆元。

2.对于求2关于1e9+7的逆元比较特殊,可以直接推公式(2*x)%mod=1得到x=(mod+1)/2。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值