算法设计与分析实验:最短路径算法

一、网络延迟时间

力扣第743题

本题采用最短路径的思想进行求解

1.1 具体思路

(1)使用邻接表表示有向图:首先,我们可以使用邻接表来表示有向图。邻接表是一种数据结构,用于表示图中顶点的相邻关系。在这个问题中,我们可以使用字典(Python 中的 defaultdict)来实现邻接表,其中键是源节点,值是一个列表,包含了从该源节点出发的边以及对应的传递时间。

(2)使用最短路径算法计算从节点 K 到其他节点的最短路径:我们可以使用 Dijkstra 算法或者 Bellman-Ford 算法来计算从节点 K 到其他所有节点的最短路径。这些算法可以帮助我们找到从节点 K 出发,到达其他节点的最短路径长度。在这个问题中,我们可以使用 Dijkstra 算法,它能够高效地处理正权重边的最短路径问题。

(3)找出最长的最短路径:最后,我们找出所有最短路径中的最大值,即找到信号传递到所有节点所需的时间。这是因为信号需要经过最长的最短路径才能传递到所有节点。如果有节点无法收到信号,我们将返回-1。

1.2 思路展示

假设我们有以下有向图和起始节点 K:

图示例:

起始节点 K = 2

对应的邻接表为:

{

  2: [(1, 2), (3, 1)],

  3: [(4, 1)],

  1: [(3, 1), (4, 2)]

}

然后使用 Dijkstra 算法来计算从节点 2 出发到其他节点的最短路径。过程如下:

从节点 2 出发,到达节点 1 的距离为 2,到达节点 3 的距离为 1。

选择距离最短的节点 3,然后更新节点 3 相邻节点的距离:到达节点 4 的距离为 2。

最终得到的最短路径为:从节点 2 出发到节点 1 的最短路径长度为 2,到节点 3 的最短路径长度为 1,到节点 4 的最短路径长度为 2。

最长的最短路径为 2,即信号传递到所有节点所需的时间为 2。

1.3 代码实现

  1. import collections
    import heapq
    
    def networkDelayTime(times, n, k):
        # 构建邻接表表示的有向图
        graph = collections.defaultdict(list)
        for u, v, w in times:
            graph[u].append((v, w))
    
        # 使用 Dijkstra 算法计算最短路径
        pq = [(0, k)]  # 优先队列,存储节点及当前距离
        dist = {}      # 存储从节点 K 到各节点的最短路径长度
        while pq:
            d, node = heapq.heappop(pq)
            if node in dist:
                continue
            dist[node] = d
            for nei, d2 in graph[node]:
                if nei not in dist:
                    heapq.heappush(pq, (d + d2, nei))
    
        # 找出最长的最短路径,即找到信号传递到所有节点所需的时间
        if len(dist) == n:
            return max(dist.values())
        else:
            return -1
    
    # 示例输入
    times = [[2, 1, 1], [2, 3, 1], [3, 4, 1]]
    n = 4
    k = 2
    
    # 输出结果
    print(networkDelayTime(times, n, k))
    
    

    1.4 复杂度分析

这段代码使用了Dijkstra算法来计算最短路径,下面是对其时间复杂度的分析:

构建邻接表表示的有向图:遍历times列表中的每个元素,时间复杂度为O(E),其中E为times的长度。

使用Dijkstra算法计算最短路径:最坏情况下,需要遍历所有的节点和边。每次从优先队列中弹出距离最小的节点,时间复杂度为O(logN),其中N为节点的总数。在每个节点上,需要遍历其邻居节点,时间复杂度为O(K),其中K为节点的平均邻居节点数。因此,总的时间复杂度为O((N+K)logN)。

找出最长的最短路径:遍历dist字典中的所有值,时间复杂度为O(N)。

综上所述,整体的时间复杂度为O(E + (N+K)logN + N)。空间复杂度为O(N+E),其中N为节点的总数,E为边的总数。

1.5 运行结果

# 示例输入

times = [[2, 1, 1], [2, 3, 1], [3, 4, 1]]

n = 4

k = 2

运行结果与预期一致

二、概率最大的路径

力扣第1514题

本题依旧采用最短路径的思想解决

2.1 具体思路

可以使用Dijkstra算法来解决。

首先构建无向加权图:使用字典graph来表示图,键为节点编号,值为一个列表,表示与该节点相邻的节点及对应的边权重。遍历edges和succProb两个列表,将节点和对应的边权重添加到graph中。

初始化距离列表和概率列表:使用列表dist和probs来分别存储从起点到每个节点的最短距离和成功概率。将起点的最短距离设置为1,其余节点的最短距离设置为0,起点的成功概率设置为1,其余节点的成功概率设置为0。

使用Dijkstra算法计算最短路径:使用堆优化的Dijkstra算法来计算从起点到每个节点的最短距离和成功概率。首先将起点加入优先队列pq。在每次循环中,从优先队列中弹出距离最小的节点node,遍历与该节点相邻的节点nei。如果从起点到nei的路径的成功概率乘以nei到node的边权重大于从起点到node的最短距离,并且这个概率乘以边权重大于nei节点当前的成功概率,则更新nei节点的最短距离和成功概率,并将(nei, -距离)添加到优先队列中。

返回终点的成功概率:如果终点的成功概率大于0,则返回终点的成功概率,否则返回0。

2.2 思路展示

假设给定无向加权图,其中节点0到节点3的成功概率最大。

首先,我们将这个图构建成一个字典graph,如下所示:

graph = {

    0: [(1, -math.log(0.5)), (2, -math.log(0.2))],

    1: [(0, -math.log(0.5)), (2, -math.log(0.5))],

    2: [(0, -math.log(0.2)), (1, -math.log(0.5)), (3, -math.log(0.3))],

    3: [(2, -math.log(0.3))]

}

接下来,我们初始化距离和概率列表,如下所示:

dist = [0, 0, 0, 0]

probs = [0, 0, 0, 0]

dist[0] = 1

probs[0] = 1

然后,我们使用Dijkstra算法计算最短路径。首先将起点0加入优先队列pq。在第一次循环中,从优先队列中弹出距离最小的节点0,遍历与该节点相邻的节点1和2。由于从起点到节点1的路径的成功概率乘以1到0的边权重(即-log(0.5))等于0.5,大于从起点到节点0的最短距离1,并且这个概率乘以边权重大于节点1当前的成功概率0,则更新节点1的最短距离和成功概率,并将(1, -距离)添加到优先队列中。同样的,我们也会更新节点2的最短距离和成功概率。

在第二次循环中,从优先队列中弹出距离最小的节点1,遍历与该节点相邻的节点0和2。由于从起点到节点0的路径的成功概率乘以1到0的边权重等于0.5,大于从起点到节点1的最短距离并且这个概率乘以边权重大于节点0当前的成功概率0,则更新节点0的最短距离和成功概率,并将(0, -距离)添加到优先队列中。同时,我们也会更新节点2的最短距离和成功概率。

在第三次循环中,从优先队列中弹出距离最小的节点2,遍历与该节点相邻的节点0、1和3。由于从起点到节点3的路径的成功概率乘以2到3的边权重(即-log(0.3))等于0.8,大于从起点到节点2的最短距离并且这个概率乘以边权重大于节点3当前的成功概率0,则更新节点3的最短距离和成功概率,并将(3, -距离)添加到优先队列中。我们也会更新节点0和1的最短距离和成功概率。

在最后一次循环中,从优先队列中弹出距离最小的节点3,发现它没有相邻的节点,结束Dijkstra算法的计算过程。

最后,我们返回终点3的成功概率0.25。

2.3 代码实现

import heapq
import math
from collections import defaultdict

def maxProbability(n, edges, succProb, start, end):
    # 构建无向带权图
    graph = defaultdict(list)
    for i in range(len(edges)):
        u, v = edges[i]
        p = succProb[i]
        graph[u].append((v, -math.log(p)))
        graph[v].append((u, -math.log(p)))

    # 初始化概率列表
    probs = [0] * n
    probs[start] = 1

    # 使用Dijkstra算法计算最大成功概率路径
    pq = [(-1, start)]
    while pq:
        prob, node = heapq.heappop(pq)
        prob = -prob  # 取相反数以便按概率从大到小排序
        if node == end:
            return prob
        for nei, edge_prob in graph[node]:
            new_prob = prob * math.exp(edge_prob)
            if new_prob > probs[nei]:
                probs[nei] = new_prob
                heapq.heappush(pq, (-new_prob, nei))

    # 如果没有从起点到终点的路径,则返回0
    return 0

# 示例测试
n = 3
edges = [[0,1],[1,2],[0,2]]
succProb = [0.5,0.5,0.2]
start = 0
end = 2
print(maxProbability(n, edges, succProb, start, end))  # 输出: 0.25

succProb = [0.5,0.5,0.3]
print(maxProbability(n, edges, succProb, start, end))  # 输出: 0.3

edges = [[0,1]]
succProb = [0.5]
print(maxProbability(n, edges, succProb, start, end))  # 输出: 0

2.4 复杂度分析

这段代码的时间复杂度为 O(ElogV),其中 E 是边数,V 是节点数。这是因为在 Dijkstra 算法中,每条边最多会被遍历一次,而堆的插入和弹出操作的时间复杂度为 O(logV),因此总时间复杂度为 O(ElogV)。

空间复杂度为 O(V),主要是用来存储概率列表和堆。

2.5 运行结果

与预期结果均保持一致

三、最小路径和

力扣第64题

本题采用动态规划的思想解决

3.1 具体思路

定义一个二维数组 dp,其大小为 m x n。其中 dp[i][j] 表示从左上角到达网格位置 (i, j) 的最小路径和。

初始化第一行和第一列的路径和,因为只能向右或向下移动,所以第一行的路径和为前一个位置的路径和加上当前位置的值,第一列的路径和同理。

对于其他位置 (i, j),可以从上方或左方移动过来,选择路径和较小的那个路径,并加上当前位置的值。

遍历整个网格,更新 dp 数组中的路径和,直到达到右下角位置 (m-1, n-1)。

返回 dp[m-1][n-1],即右下角位置的最小路径和。

3.2 思路展示

假设输入的网格为:

1 3 1

1 5 1

4 2 1

首先定义一个二维数组 dp,其大小为 m x n。其中 dp[i][j] 表示从左上角到达网格位置 (i, j) 的最小路径和。

0 0 0

0 0 0

0 0 0

然后初始化第一行和第一列的路径和,因为只能向右或向下移动,所以第一行的路径和为前一个位置的路径和加上当前位置的值,第一列的路径和同理。

1 4 5

2 0 0

6 0 0

对于其他位置 (i, j),可以从上方或左方移动过来,选择路径和较小的那个路径,并加上当前位置的值。

1 4 5

2 7 6

6 8 7

遍历整个网格,更新 dp 数组中的路径和,直到达到右下角位置 (m-1, n-1)。

最后返回 dp[m-1][n-1],即右下角位置的最小路径和。

3.3 代码实现

def minPathSum(grid):
    m, n = len(grid), len(grid[0])
    dp = [[0] * n for _ in range(m)]

    # 初始化第一行和第一列的路径和
    dp[0][0] = grid[0][0]
    for i in range(1, m):
        dp[i][0] = dp[i-1][0] + grid[i][0]
    for j in range(1, n):
        dp[0][j] = dp[0][j-1] + grid[0][j]

    # 动态规划更新路径和
    for i in range(1, m):
        for j in range(1, n):
            dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]

    return dp[m-1][n-1]

# 示例测试
grid = [[1,3,1],[1,5,1],[4,2,1]]
print(minPathSum(grid))  # 输出: 7

grid = [[1,2,3],[4,5,6]]
print(minPathSum(grid))  # 输出: 12

3.4 复杂度分析

这段代码的时间复杂度为 O(m*n),其中 m 和 n 分别是网格的行数和列数。这是因为代码中使用了两层嵌套的循环来遍历整个网格,并更新 dp 数组中的路径和。

空间复杂度为 O(m*n),因为创建了一个与网格大小相同的二维数组 dp,用于存储路径和。

总结起来,这段代码通过动态规划的思想,利用一个二维数组记录从左上角到达每个位置的最小路径和,最后返回右下角位置的路径和。时间和空间复杂度都是网格的大小,因此在实践中,如果网格较大,可能需要考虑优化算法或使用其他方法来减少时间和空间开销。

3.5 运行结果

# 示例测试

grid = [[1,3,1],[1,5,1],[4,2,1]]

print(minPathSum(grid))  # 输出: 7

grid = [[1,2,3],[4,5,6]]

print(minPathSum(grid))  # 输出: 12

运行结果均与预期一致

结尾语

选择大于努力!

2025-2-2

  • 24
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长安er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值