jmu-python-函数-找钱

这篇博客介绍了如何实现一个找零算法,目标是用最少数量的10元、5元和1元钞票找零。给定需要找给用户的金额,算法会计算出最佳的组合。例如,找零17元时,会使用1张10元、1张5元和2张1元。函数`giveChange(money)`接收找零金额,并返回一个字符串表示找零方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

买单时,营业员要给用户找钱。营业员手里有10元、5元、1元(假设1元为最小单位)几种面额的钞票,其希望以尽可能少(张数)的钞票将钱换给用户。比如,需要找给用户17元,那么其需要给用户1张10元,1张5元,2张1元。而不是给用户17张1元或者3张5元与2张1元。

函数接口定义:

giveChange(money) #money为要找的钱。经过计算,应按格式"要找的钱 = x*10 + y*5 + z*1"输出。

裁判测试程序样例:

/* 请在这里填写答案 */

n = int(input())

for i in range(n):

    giveChange(int(input()))

输入样例:

5

109

17

10

3

0

输出样例:

109 = 10*10 + 1*5 + 4*1

17 = 1*10 + 1*5 + 2*1

10 = 1*10 + 0*5 + 0*1

3 = 0*10 + 0*5 + 3*1

0 = 0*10 + 0*5 +
 

 

代码

def giveChange(num):

    x=int(num/10)

    m=num%10

    y=int(m/5)

    m=m%5

    z=int(m/1)

    print("{} = {}*10 + {}*5 + {}*1".format(num,x,y,z))

在Python中,我们可以使用数值计算库如SymPy来处理这类数学问题。首先,我们需要安装`sympy`库,然后导入它并定义函数f(x): ```python from sympy import symbols, diff, solve, S # 定义变量和函数 x = symbols('x') f_x = 5*x**3 + 2*x**2 - 3*x ``` 接下来,我们分析函数的性质: 1. **单调区间**: 我们需要计算导数f'(x),如果导数大于0,函数递增;小于0,函数递减。我们找出导数等于0的根(拐点),这是函数变化的转折点: ```python f_prime_x = diff(f_x, x) critical_points = solve(f_prime_x, x) ``` 使用`f_prime_x > 0`和`f_prime_x < 0`来确定单调区间: ```python intervals = [(a, b) for a, b in zip(sorted(critical_points), sorted(critical_points[1:] + [S.Infinity])) if f_prime_x.subs(x, a) * f_prime_x.subs(x, b) < 0] ``` 2. **极值点**: 极值点包括局部极大值和局部极小值,它们出现在导数改变符号的地方,即拐点。我们可以使用二阶导数测试验证这些点是否是极值点: ```python f_double_prime_x = diff(f_prime_x, x) extrema = [] for point in critical_points: if f_double_prime_x.subs(x, point) > 0: extrema.append(('local minimum', point)) elif f_double_prime_x.subs(x, point) < 0: extrema.append(('local maximum', point)) ``` 3. **凹凸区间**: 函数在凹区时其二阶导数大于0,在凸区则二阶导数小于0。同样,遍历刚才找到的区间判断: ```python concavity_intervals = [(a, b) for (status, a), (next_status, b) in zip(extrema[:-1], extrema[1:]) if f_double_prime_x.subs(x, a) * f_double_prime_x.subs(x, b) > 0 and status != next_status] ``` 最后,打印结果: ```python print("单调区间:", intervals) print("极值点:", extrema) print("凹凸区间:", concavity_intervals) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值