01背包问题

描述

有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是Vi,价值是Wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
0<N,V≤1000
0<vi,wi≤1000

输入

第一行两个整数,N, V,用空格隔开,分别表示物品数量和背包容积。
接下来有N行,每行两个整数Vi, Wi用空格隔开,分别表示第i件物品的体积和价值。

输出

输出一个整数,表示最大价值。

输入样例 1 

4 5
1 2
2 4
3 4
4 5

输出样例 1

8

题解1:深度优先搜索

#include<bits/stdc++.h>
using namespace std;
int N,V,v[1010],w[1010],a[1010][1010];
int dfs(int id,int vv){
	if(a[id][vv]!=0) return a[id][vv];
	if(id>N) a[id][vv]=0;
	else if(v[id]>vv) a[id][vv]=dfs(id+1,vv);
	else a[id][vv]=max(dfs(id+1,vv),dfs(id+1,vv-v[id])+w[id]);
	return a[id][vv];
} 
int main(){
	cin>>N>>V;
	for(int i=1;i<=N;i++)cin>>v[i]>>w[i];
	cout<<dfs(1,V);
	return 0;
}

题解2:动态规划

#include<bits/stdc++.h> 
using namespace std;
int dp[1010][1010],N,V,v[1010],w[1010];
int main(){
	cin>>N>>V;
	for(int i=1;i<=N;i++) cin>>v[i]>>w[i];
	for(int i=1;i<=N;i++){
		for(int j=1;j<=V;j++){
			if(j>=v[i])dp[i][j]=max(dp[i-1][j-v[i]]+w[i],dp[i-1][j]);
			else dp[i][j]=dp[i-1][j];
		}
	}
	cout<<dp[N][V];
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值