资料分析
1. 实用速算技巧
1.1加法技巧:尾数法、高位叠加法、削峰填谷法
1.1.1尾数法
在多个数字(数字要为整数)精确求和或求差时,从“尾数”处入手,为保证精确与速度,一般可观察两位(当四个选项最后一位都不一样时可只观察一位)
例题:
1.1.2 高位叠加
和我们记忆中的列竖式做加法顺序正好相反,高位叠加时从高位加起,抓住问题的主要矛盾。非精确求和或没有选项可以参考时,可以选用高位叠加法。
计算方法:
等差数列相加运算技巧:中间项乘与项数,如:1 + 2 + 3 = 2 * 3 = 6
注意:如果某一位加起来小于10,那么需要用0占位,如,是4那就要写04
例题:
1.1.3 削峰填谷
若几个相近数字求和或平均值,可以先找出基准值,再根据“偏离总和”求得总和或平均值。
例题:
1.2 减法技巧:整数基准值法、“21”“12”分段法
1.2.1 整数基准值法
被减数 - 减数 = (被减数 - 基准值) + (基准值 - 减数),例如“632 - 589”,我们可以加入600作为基准值,则632 - 589 = (635 - 600) + (600 - 589)。
1.2.2 “21”“12”分段法
将三位数的减法分成“21”或“12”两端,尽可能保证不用借位。
计算方法(分段计算然后拼接):
总结:相邻近的两个数用基准法更方便,不相邻可以用分段法用来减少借位操作。
作业题:
1.3 乘法技巧:小分互换法、拆分法
1.3.1 小分互换(不常用)
若乘法中有某个乘数可以近似的转换为某个常见分数,我们可以将多位数乘法转化为简单除法计算。
需记忆的常用小数如下:(1/11 = 9.1% 3/8 = 37.5% 5/8 = 62.5%)
作业题:
1.3.2 乘法拆分
若乘法中有某个乘数为百分数且能拆成两个简单数值(50%、10%、5%等),我们可以将该百分数拆成两部分相乘,要善用“1%”(“一个包子”)
常用的小数拆分如下:
计算方法:
作业题:
1.4 除法技巧:拆分发及其拓展
1.4.1 除法截位规则
绝大多数除法都可以保留三位计算,达到速度与准度的平衡,可3位/3位,3位/5位、4位/3位、5位/3位
【例1】50%左右(两数之比):
解题方法:
【例2】100%左右(两数之比):
【例3】1% - 20%左右
【例4】实战演练(将两个数都缩小几位如475/898)(答案ccc)
1.4.2 拆分法
拆分法是对直除的“优化”,可借助选项“猜”出答案。
拆分法具体应用:
一:如果分子在分母的50%附近,先拆出50%;
二:如果分数大小约等于1(分子分母相差不大),可先拆出100%;
三:如果分子很小,可根据实际情况拆出10%或%5或1%;
四:若通过首位判断分数在1/4、1/3左右,可先拆1/4、1/3,此规则运用次数少,了解即可
1.4.3 方法拓展之分子分母同时拆分(盐水思想运用)
利用盐水思想,将分子分母同时拆分,可以判断数字是否大于或小于某个数字。
【例1】:
【例2】:
【例3】:
【例4】:
1.5 基础概念介绍--ABRX四量关系
1.5.1 名词解释
基期和末期(前期、本期):
基期(A):表示的是在比较两个时期的变化时,用来做比较值(基准值)的时期;
末期(B):相对于基期而言,是当前所处的时期。
增长率(R)
增长量(X)
【注】与谁相比,谁为基期。