目录
一、截位直除
1.1 什么是截位?
从左边第一个非0的数开始留数字的前几位(截几位,就是四舍五入保留几位)
1.2 保留几位?
看选项差距:
【差距大,保留 2位,算的快,还能算得准;】
【差距小,保留3位,算的慢些,但保证准;】
差距大:首位数字都不一样→ A 25 B 36
首位数字相同,第二位数字差值>首位→A13 B15
差距小:首位数字都不一样,但临界→ A29 B 30
首位数字相同,第二位数字差值≤首位→ A207 B 217 A 207 B 227
1.3 截谁?
看算式形式:
●一步除法:建议只截分母
●多步除法:建议分子分母都截(截完约分)
1.4 截几位?
看选项差距(找最接近的选项之间差距)
【一般情况下,截两位计算快,截三位计算准】
选项差距大(截两位)
①四个选项首位均不同
②首位相同,第二位差大于首位
选项差距小(截三位)
首位相同且第二位差小于等于首位
截位直除思维导图
二、分数比较
- 一大一小,直接看:分子大的分数大
- 同大同小: 竖着直接除:一般分母截两位计算即可
横着看倍数: ①分子间倍数大,看分子,分子大的分数大
②分母间倍数大,看分母,分母大的分数小
分数比较思维导图
三、基期量
3.1 题型识别:
给现在的值,求过去的值是多少
3.2 计算公式
- 给现期量和增长量:基期量=现期量-增长量(公式一:已知增长量)
- 给现期量和增长率:基期量= 现期量/1+增长率 (公式二:已知增长率)
- 基期 =增长量/增长率
3.3 知识点链接--同比与环比
同比:和去年同时期相比(年份前推)
环比:和上一个统计周期相比(月份或者季度前推)
3.4 补充:基期和差
1. 结合现期量和正负进行排除
2. 排除不了再进行计算
四、现期量
4.1 题型识别
给现在的值,求将来的值是多少
4.2 计算公式
- 给基期量和增长量:现期量=基期量+增长量
给基期量和增长率:现期量=基期量x(1+增长率)
例子1:2018年收入100元2019年预计比上一年增长50元,则2019年收入是多少
例子2:2018年收入是100元,2019年预计比上一年增长50%,则2019年收入是多少
补充速算小技工
①一个数x1.1→错位相加
例:120x1.1=
②一个数x0.9一错位相减
例: 120x0.9
③一个数x1.5一自身+自身的一半
例:120x1.5
4.2.1 现期追赶 ( 增长量不变 )
追定量:所需年数(n)=现在差距/增长量,不为整数,往大取整,所求年份=基期年份+n
追变量:所需年数(n)=现在差距/增量差距,不为整数,往大取整,所求年份=基期年份+n
基期与现期思维导图
五、增长率
1、基本术语:
1.1 增长率
增长率是用来表述基期量与现期量变化的相对量。增长率又称增速、增幅或者增长幅度、增值率等,增长率为负时表示下降,下降率也可直接写成负的增长率。1.2 百分数与百分点
- 百分数:用来反映量之间的比例关系。
- 百分点:用来反映百分数的变化。
1.3 增长率与倍数
- 增长率指比基期量多出的比率,倍数指两数的直接比值。
- 若 A 是 B 的 n 倍,则 n=r+1(r 指 A 相对于 B 的增长率)。
1.4 成数与翻番
- 成数:几成相当于十分之几。
- 翻番:翻一番为原来的 2 倍,翻两番为原来的 4 倍,依此类推,翻 n 番为原来的 2 n 倍。
1.5 增幅、降幅与变化幅度
- 增幅:一般就是指增长率,有正有负。
- 降幅:指下降的幅度,降幅比较大小时,只比较增长率的绝对值(前提必须为下降)。
- 变化幅度:指增长或下降的绝对比率,变化幅度比较大小时,用增幅(降幅)的绝 对值
2、增长率公式
增长率 = 增长量 = 增长量 = 现期-基期
基期 现期 -增长量 基期
方法:记住核心公式,分子、分母给一个,做减法求另外一个
第一步:看加减,看百分点前表述“高减低加”
“提高”:上升、增加、扩大、提升 等
“降低”:下降、减少、缩小、收窄 等
第二步:看规则,再往前看表述"按规办事”
增速/增幅:有负号带负号计算
降幅:只计算数字(绝对值)
例:2024 年志哥工资的同比增长10%,增速比上年提高了3个百分点,2023 年志哥工资的同比增长率为--(7%)
例:2024 年志哥工资的同比下降10%,降幅比上年扩大了3个百分点,2023 年志哥工资的同比增长率为--(-7%)
2.1 特定增长率
2.1.1 给现期、基期判断增长率大于某一数值的有几个
增长率为整十的数字(10%、20%50%等)→转化倍数,速算倍数
第一步,转化倍数:增长率+1=是几倍