目录
论文名称 :Positive, Negative and Neutral: Modeling Implicit Feedback in
中文名称:积极、消极和中立:在基于会话的新闻推荐中建模的隐式反馈
作者: Shansan Gong 和 Kenny Q. Zhu
3.4 Notations and descriptions (符号和说明)
4.1 Session-based Recommendation Basics(基于会话的推荐基础)
一 论文简介
论文名称 :Positive, Negative and Neutral: Modeling Implicit Feedback in
中文名称:积极、消极和中立:在基于会话的新闻推荐中建模的隐式反馈
作者: Shansan Gong 和 Kenny Q. Zhu
二 ABSTRACT(摘要)
对于许多新闻门户来说,对匿名读者的新闻推荐是一项有用但具有挑战性的任务,在这些新闻门户中,读者和文章之间的交互被限制在一个临时登录会话内。之前的工作倾向于将基于会话的推荐制定为下一个项目预测任务,而他们忽略了来自用户行为的内隐式反馈,这表明了用户真正喜欢或不喜欢什么。因此,我们提出了一个全面的框架,通过积极反馈(即他们花更多时间写的文章)和负面反馈(即他们选择跳过的文章)来建模用户行为。此外,该框架隐式地使用用户的会话开始时间,以及文章的初始发布时间对用户进行建模,我们称之为“中立反馈”。对三个真实世界的新闻数据集的经验评估显示,与其他最先进的基于会话的推荐方法相比,该框架具有更准确、多样化甚至意想不到的推荐性能。
总结:新闻方面的浏览,读者往往采用匿名登录的方式,因此就构建推荐系统而言很难得到 用户的信息,读者和文章之间的交互往往被限制在一个临时登录会话内,因此对于新闻而言,我们常用会话推荐。传统会话推荐,往往忽略了用户行为的隐式反馈,本文构建了一个新的框架,即通过积极反馈,负面反馈,中立反馈进行建模。
三 INTRODUCTION(介绍)
3.1 当前新闻推荐的方法和作者提出的背景
正如摘要所讲的那样,由于在线新闻阅读中,用户的匿名性和用户与文章交互会话的短暂性,系统很难理解用户的行为而进行推荐。传统的新闻推荐方法倾向于将推荐任务制定为CTR预测任务,要求系统跟踪用户历史,不能应用于匿名访问或客人登录。要求系统跟踪用户历史,不能应用于匿名访问或客人登录。新闻推荐神经方法主要关注于编码具有注意机制的文章的文本特征,在建模用户的兴趣时,而很少关注点击行为或文章到文章的转换。我们可以看到以上方法都存在不足。
考虑到上述问题,将面向匿名用户的类流媒体新闻推荐任务作为一个基于会话的推荐任务是很自然和现实的。任务是根据会话中之前的行为序列,推荐用户可能感兴趣的下一个项,其中会话通常是用户登录的短时间(例如,30分钟)。基于会话的推荐在电子商务或视频流领域中得到了广泛的应用,可以成功地捕获用户的短期意图过渡过程。然而,他们很少考虑来自用户行为的隐式反馈。
3.2 作者的提出的创意
在本文中,作者感兴趣的是利用点击本身之外的用户操作。我们称之为“隐式反馈”1,典型的隐式反馈可以从浏览主页、阅读一篇文章、关闭一篇文章、回溯等过程中提取出来。作者认为,在基于会话的推荐系统中“显式地”建模这种隐式反馈,可以帮助推荐者更好地理解用户的意图。在这项工作中,我们专注于回答这些问题: 1.如果一个用户点击了一篇文章,她真的喜欢它吗 ? 2.如果一个用户没有点击一篇文章,她不喜欢它吗 ? 3.我们如何建模系统