机器学习之KMeans聚类算法原理(附案例实战)

14天阅读挑战赛

KMeans聚类 

 什么是聚类任务

  • 1 无监督机器学习的一种
  • 2 目标将已有数据根据相似度划分到不同的簇
  • 3 簇内样本彼此之间越相似,不同簇的样本之间越不相似,就越好

为什么叫KMeans聚类

  • 1 也可以叫K均值聚类
  • 2 K是最终簇数量,它是超参数,需要预先设定
  • 3 在算法计算中会涉及到求均值

 KMeans流程

  • 1 随机选择K个簇中心点
  • 2 样本被分配到离其最近的中心点
  • 3 K个簇中心点根据所在簇样本,以求平均值的方式重新计算
  • 4 重复第2步和第3步直到所有样本的分配不再改变

 如何计算样本到中心点的距离

1. 欧氏距离测度 Euclidean Distance Measure

 欧氏距离越大,相似度越低

2. 余弦距离测度 Cosine Similarity Measure

夹角越大,余弦值越小,相似度越低 

         因为是cosine,所以取值范围是-1到1之间,它判断的是向量之间的 方向而不是大小;两个向量有同样的方向那么cosine相似度为1,两 个向量方向相对成90°那么cosine相似度为0,两个向量正相反那么 cosine相似度为-1,和它们的大小无关。

选择Cosine相似度还是欧氏距离

        总体来说,欧氏距离体现数值上的绝对差异,而余弦距离体现方向 上的相对差异。

        例如,统计两部剧的用户观看行为,用户A的观看向量为(0, 1),用户B为(1,0);此时二者的余弦距离很大,而欧氏距离很 小;我们分析两个用户对于不同视频的偏好,更关注相对差异,显 然应当使用余弦距离。 而当我们分析用户活跃度,以登陆次数(单位:次)和平均观看时长 (单位:分钟)作为特征时,余弦距离会认为(1,10)、(10, 100)两个用户距离很近;但显然这两个用户活跃度是有着极大差 异的,此时我们更关注数值绝对差异,应当使用欧氏距离。

KMeans算法目标函数

        上面的公式既是要去最小化的目标函数,同时也可以作为评价 KMeans聚类效果好坏的评估指标。 

 KMeans算法不保证找到最好的解

        事实上,我们随机初始化选择了不同的初始中心点,我们或许会获 得不同的结果,就是所谓的收敛到不同的局部最优;这其实也就从 事实上说明了目标函数是非凸函数。

一个通常的做法就是运行KMeans很多次,每次随机初始化不同的 初始中心点,然后从多次运行结果中选择最好的局部最优解。 

KMeans算法K的选择

没有所谓最好的选择聚类数的方法,通常是需要根据不同的问题, 人工进行选择的。 

肘部法则(Elbow method)

改变聚类数K,然后进行聚类,计算损失函数,拐点处即为推荐的聚 类数 (即通过此点后,聚类数的增大也不会对损失函数的下降带来很 大的影响,所以会选择拐点)。

目标法则

如果聚类本身是为了有监督任务服务的(例如聚类产生features 【譬如KMeans用于某个或某些个数据特征的离散化】然后将 KMeans离散化后的特征用于下游任务),则可以直接根据下游任 务的metrics进行评估更好。

KMeans实战案例-NBA球队实力聚类分析

导包

from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import MinMaxScaler

导入数据

data = pd.read_csv('nba.csv')
data.head()

处理数据

minmax_scaler = MinMaxScaler()
# 标准化数据
X = minmax_scaler.fit_transform(data.iloc[:,1:])

 使用肘部法则确定聚类的K值

# 肘部法则
loss = []
for i in range(2,10):
    model = KMeans(n_clusters=i).fit(X)
    loss.append(model.inertia_)
    
plt.plot(range(2,10),loss)
plt.xlabel('k')
plt.ylabel('loss')
plt.show()

使用肘部法则,我们一般选取的是曲线平缓的时候,这里我们选取4作为K值

k = 4
model = KMeans(n_clusters=k).fit(X)
# 将标签整合到原始数据上
data['clusters'] = model.labels_
data.head()

 

查看聚类统计结果 

for i in range(k):
    print('clusters:',i)
    label_data = data[data['clusters'] == i].iloc[:,0]
    print(label_data.values)

  • 20
    点赞
  • 166
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 17
    评论
### 回答1: K-means聚类算法是一种简单且常用的聚类算法,其原理图可用以下步骤进行解释: 1. 初始化:随机选择K个数据点作为初始的聚类中心。这些中心点被称为质心。 2. 分配数据点:将每个数据点分配给与其最近的质心。这个步骤通过计算数据点与每个质心之间的距离来完成。 3. 更新质心:计算每个聚类的所有数据点的平均值,将这个平均值作为新的质心。这个步骤通过重新计算质心的坐标来完成。 4. 迭代更新:重复步骤2和3,直到质心不再发生变化或达到提前停止的条件。 5. 结果输出:每个数据点根据最终的质心分配到一个聚类中。 K-means聚类算法原理图描述了以上的步骤。首先,在原始数据空间中,随机选择K个数据点(用不同的符号表示)作为初始的质心。接着,根据每个数据点与每个质心之间的距离,将数据点划分到与其最近的质心所代表的聚类中(用相同的颜色表示)。然后,根据每个聚类中的数据点的坐标计算平均值,更新质心的坐标。在重新计算质心后,重复进行分配数据点和更新质心的步骤,直到质心稳定下来,即质心不再发生变化为止。最终,根据最终质心的位置将数据点分配到对应的聚类中。 K-means聚类算法原理图直观地展示了聚类的过程和分组的结果,使人们更容易理解和掌握这一算法的工作原理。 ### 回答2: kmeans聚类算法是一种基于距离的无监督学习算法,主要用于将数据集中的样本分成多个不同的类别。其原理图如下: 1. 初始化:首先确定要分成的类别数K,并随机选择K个样本作为初始的聚类中心点。 2. 分类:对于每个样本数据,计算其与每个聚类中心点的距离,并将其归属为与其距离最近的聚类中心的类别。 3. 更新聚类中心点:对于每个类别,计算属于该类别的所有样本的平均值,将这些平均值作为新的聚类中心点。 4. 重复步骤2和3:重复执行步骤2和3,直到聚类中心点不再发生变化或达到预先设定的迭代次数。 5. 输出结果:得到经过聚类的样本类别结果,即每个样本被归为哪一个类别。 kmeans聚类算法的核心思想是通过最小化样本数据点与所属聚类中心点之间的距离,来实现样本点的聚类。该算法的优点在于简单和高效,适用于大规模数据集。然而,kmeans算法也有一些不足之处,比如对初始聚类中心点的选择敏感,容易陷入局部最优解,并且对噪声和异常值敏感。 总而言之,kmeans聚类算法通过将样本点分配到距离最近的聚类中心点,实现对数据集的聚类,是一种常用的聚类算法。 ### 回答3: K均值聚类算法是一种无监督的机器学习算法,其原理图如下: 1. 首先,选择k个初始的聚类中心点,可以是随机选择或自定义选择。 2. 将数据样本点根据与聚类中心点的距离,分配给最近的聚类中心点所属的类别。 3. 根据划分后的数据点集计算每个类别的质心,即计算每个类别中所有样本点的均值。 4. 将每个类别的质心作为新的聚类中心点。 5. 重复步骤2和步骤3,直到聚类中心点不再变化或者达到事先设定的迭代次数。 6. 最终得到聚类结果,即将每个数据点分配到相应的聚类中心点所属的类别。 K均值聚类算法原理是通过不断迭代优化聚类中心点的位置,使得样本点与所属聚类中心点之间的距离最小化。算法的过程可以用原理图简单描述。 原理图中有两个主要的步骤:数据点的分配和质心的更新。在数据点的分配步骤中,每个数据点会根据与聚类中心点的距离选择属于哪个聚类中心点所代表的类别。而在质心的更新步骤中,根据分配后的数据点集,计算每个类别中所有样本点的均值,即得到每个类别的质心。 通过不断迭代这两个步骤,最终得到的聚类中心点和样本点之间的距离最小化,同时使得每个聚类中心点所代表的类别内部的样本点尽量相似,而不同类别之间的样本点尽量不相似。 K均值聚类算法原理图直观地展示了算法通过逐步分配和更新聚类中心点,不断优化聚类结果的过程,从而得到数据的聚类结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾派森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值