对于拓扑空间的一些理解

本文参考熊金城《拓扑学》第2版,仅梳理思路,具体证明请查阅原书。

1. 拓扑空间

拓扑空间可以看做是一个集合 X X X连同它的子集(称为开集)的一个族,使得 ∅ \empty X X X是开集,开集的任意并和有限交为都是开集。
离散拓扑 平凡拓扑 有限补拓扑

T ′ ⊃ T \mathcal{T} ^{'}\supset \mathcal{T} TT,则称 T ′ \mathcal{T}^{'} T细于 T \mathcal{T} T。我们称 T ′ \mathcal{T}^{'} T T \mathcal{T} T是可比较的,如果或者 T ′ ⊃ T \mathcal{T} ^{'}\supset \mathcal{T} TT,或者 T ⊃ T ′ \mathcal{T}\supset \mathcal{T}{'} TT

2. 拓扑基和拓扑子基

B \mathcal{B} B X X X上的一个拓扑基,则 U ∈ T B U\in \mathcal{T}_\mathcal{B} UTB当且仅当 ∀ x ∈ U , ∃ B ∈ B , s . t . x ∈ B ⊂ U \forall x\in U,\exists B\in \mathcal{B},s.t.x\in B\subset U xU,BB,s.t.xBU
当拓扑是由基给出的时候,就可以用基作为判别拓扑粗细的一个标准。

B \mathcal{B} B B ′ \mathcal{B}^{'} B分别是 X X X的拓扑 T \mathcal{T} T T ′ \mathcal{T}^{'} T的基。则下列条件等价:
(1) T ′ \mathcal{T}^{'} T细于 T \mathcal{T} T
(2)对于每一个 x ∈ X x\in X xX及包含 x x x的每一个基元素 B ∈ B B\in \mathcal{B} BB,存在一个基元素 B ′ ∈ B ′ B^{'}\in \mathcal{B}^{'} BB,使得 x ∈ B ′ ⊂ B x\in B^{'}\subset \mathcal{B} xBB
由此可以看出,平面上所有圆形域的族 B \mathcal{B} B与所有矩形域的族 B ′ \mathcal{B}^{'} B,生成的是同一拓扑。
标准拓扑 下限拓扑( R l \R_l Rl) K拓扑( R K \R_K RK)

R l \R_l Rl R K \R_K RK的拓扑都严格细于标准拓扑,但它们之间不可比较。

由子基 S \mathcal{S} S生成的拓扑定义为 S \mathcal{S} S中元素的有限交的所有并的族。

3. 序拓扑

R \R R上的序拓扑等于标准拓扑。

4. X × Y X\times Y X×Y上的积拓扑

定理
B \mathcal{B} B X X X的一个基, C \mathcal{C} C Y Y Y的拓扑的一个基,则族
D = { B × C ∣ B ∈ B & C ∈ C } \mathcal{D}=\{B\times C|B\in \mathcal{B}\And C\in \mathcal{C}\} D={B×CBB&CC}
X × Y X\times Y X×Y的拓扑的一个基。

定义
π 1 : X × Y → X \pi_1:X\times Y\to X π1:X×YX定义为
π 1 ( x , y ) = x \pi_1(x,y) = x π1(x,y)=x
π 2 : X × Y → X \pi_2:X\times Y\to X π2:X×YX定义为
π 2 ( x , y ) = y \pi_2(x,y) = y π2(x,y)=y
映射 π 1 \pi_1 π1 π 2 \pi_2 π2分别称为 X × Y X\times Y X×Y到它的第一因子和第二因子上的投影。


S = { π 1 − 1 ( U ) ∣ U 是 X 中 的 开 集 } ∪ { π 2 − 1 ( V ) ∣ V 是 Y 中 的 开 集 } \mathcal{S} = \{\pi_1^{-1}(U)|U是X中的开集\}\cup\{\pi_2^{-1}(V)|V是Y中的开集\} S={π11(U)UX}{π21(V)VY}
X × Y X\times Y X×Y的积拓扑的一个子基。

5. 子空间拓扑

A A A X X X的一个子空间, B B B Y Y Y的一个子空间,则 A × B A\times B A×B的积拓扑与它从 X × Y X\times Y X×Y继承的子空间拓扑是同一个拓扑。
一般而言, Y Y Y上的子空间拓扑总是比 Y Y Y上的序拓扑细。
X X X是具有序拓扑的一个全序集,并且 Y Y Y X X X的一个凸子集,那么 Y Y Y的序拓扑与它从 X X X继承的子空间拓扑是同一个拓扑。

6. 闭集与极限点

X X X是一个拓扑空间,则下列结论成立:
(1) ∅ \empty X X X都是闭的。
(2)闭集的任意交都是闭的。
(3)闭集的有限并都是闭的。

Y Y Y X X X的一个子空间,集合 A A A Y Y Y的一个闭集当且仅当 A A A X X X中的一个闭集与 Y Y Y的交。
Y Y Y X X X的一个子空间,若 A A A Y Y Y的一个闭集并且 Y Y Y X X X的一个闭集,则 A A A也是 X X X的一个闭集。
Y Y Y X X X的一个子空间, A A A Y Y Y的一个子集, A ‾ \overline{A} A表示 A A A X X X中的闭包,那么 A A A Y Y Y中的闭包等于 A ‾ ∩ Y \overline{A}\cap Y AY
A A A是拓扑空间 X X X的一个子集, A ′ A' A是A的所有极限点的集合,则
A ‾ = A ∪ A ′ \overline{A} = A\cup A' A=AA

7. Hausdorff空间

Hausdorff空间中的任何有限集都是闭的。
若拓扑空间 X X X的任一单点集为闭集,则称 X X X T 1 T_1 T1空间,该条件称为 T 1 T_1 T1公理。
显然,Hausdorff空间为 T 1 T_1 T1空间
有限点集是闭集的条件比Hausdorff条件要弱,例如实直线 R \R R的有限补拓扑并不是一个Hausdorff空间,但在此空间中有限点集是闭集。
设拓扑空间 X X X满足 T 1 T_1 T1公理, A A A X X X的一个子集,则点 x x x A A A的极限点当且仅当 x x x的每一个邻域与 A A A的交是无限集。
X X X是一个Hausdorff空间,则 X X X中的一个序列最多收敛到一个点。
每一个具有序拓扑的全序集是一个Hausdorff空间。两个Hausdorff空间的积是一个Hausdorff空间,Hausdorff空间的子空间是一个Hausdorff空间。

8. 连续函数

X X X Y Y Y是两个拓扑空间, f : X → Y f:X\to Y f:XY.下列条件是等价的:
(1) f f f连续;
(2)对于 X X X的任一个子集 A A A,有 f ( A ‾ ) ⊂ f ( A ) ‾ f(\overline{A})\subset \overline{f(A)} f(A)f(A)
(3)对于 Y Y Y的任一个闭集 B B B f − 1 ( B ) f^{-1}(B) f1(B) X X X中的一个闭集;
(4)对于每一个 x ∈ X x\in X xX f ( x ) f(x) f(x)的每一个邻域 V V V,存在 x x x的一个邻域 U U U使得 f ( U ) ⊂ V f(U)\subset V f(U)V.

同胚的等价定义:
一一映射 f : X → Y f:X\to Y f:XY,使得 f ( U ) f(U) f(U)是一个开集的充要条件是 U U U是一个开集。

X X X Y Y Y是两个拓扑空间, f : X → Y f:X\to Y f:XY是一个连续单射。用 Z Z Z表示像集 f ( X ) f(X) f(X),把它看成 Y Y Y的一个子空间。那么由限制 f f f的值域得到的函数 f ′ : X → Z f':X\to Z f:XZ就是一一映射。若 f ′ f' f正好是 X X X Z Z Z之间的一个同胚,则称映射 f : X → Y f:X\to Y f:XY是一个拓扑嵌入
注: f : [ 0 , 1 ) → R 2 f:[0,1)\to \R^2 f:[0,1)R2, f ( x ) = ( c o s 2 π x , s i n 2 π x ) f(x) = (cos2\pi x,sin2\pi x) f(x)=(cos2πx,sin2πx)不是嵌入。

黏结引理
X = A ∪ B X=A\cup B X=AB并且 A A A B B B都是 X X X中的闭集。 f : A → Y f:A\to Y f:AY g : B → Y g:B\to Y g:BY都是连续函数。若对于任意 x ∈ A ∩ B x\in A\cap B xAB f ( x ) = g ( x ) f(x) =g(x) f(x)=g(x),则 f f f g g g可以组成一个连续函数 h : X → Y h:X\to Y h:XY,满足 h ( x ) = f ( x ) , x ∈ A ; h ( x ) = g ( x ) , x ∈ B h(x) = f(x),x\in A;h(x) = g(x),x\in B h(x)=f(x),xA;h(x)=g(x),xB

到积空间的映射(maps into products) & 积空间的映射(maps from products)

  • f : A → X × Y f:A\to X\times Y f:AX×Y定义为
    f ( a ) = ( f 1 ( a ) , f 2 ( a ) ) . f(a)=(f_1(a),f_2(a)). f(a)=(f1(a),f2(a)).
    f f f连续的充分必要条件是函数
    f 1 : A → X 与 f 2 : A → Y f_1:A\to X 与 f_2:A\to Y f1:AXf2:AY
    都连续。映射 f 1 , f 2 f_1,f_2 f1,f2称为 f f f坐标函数

反之,对于定义域是积空间的映射 f : A × B → X f:A\times B\to X fA×BX,则没有常用的方法判断其连续性。
猜想:如果 f f f“分别关于每一个变量”连续,则 f f f连续。但它是不对的。

9. 笛卡尔积上的拓扑

S = ⋃ α ∈ J { π α − 1 ( U α ) ∣ U α 是 X α 中 开 集 } \mathcal{S}=\bigcup _{\alpha\in J}\{\pi_{\alpha}^{-1}(U_{\alpha}) |U_{\alpha} 是X_{\alpha} 中开集\} S=αJ{πα1(Uα)UαXα} ∏ α ∈ J X α \prod_{\alpha\in J}{X_{\alpha}} αJXα上的拓扑子基,生成的拓扑称为乘积拓扑。

C = { ∏ α ∈ J U α ∣ U α 是 X α 中 开 集 } \mathcal{C} = \{\prod_{\alpha\in J}{U_{\alpha}}|U_{\alpha} 是X_{\alpha} 中开集\} C={αJUαUαXα} ∏ α ∈ J X α \prod_{\alpha\in J}{X_{\alpha}} αJXα上的拓扑基,生成的拓扑称为箱拓扑。

箱拓扑与积拓扑的比较
∏ X α \prod X_{\alpha} Xα的箱拓扑以形如 ∏ U α \prod U_{\alpha} Uα的集合作为基元素,其中,对于每一个 α \alpha α U α U_{\alpha} Uα X α X_{\alpha} Xα中是开的。 ∏ X α \prod X_{\alpha} Xα的积拓扑以形如 ∏ U α \prod U_{\alpha} Uα的集合作为基元素,其中 U α U_{\alpha} Uα X α X_{\alpha} Xα中是开的,并且除去有限多个 α \alpha α外,每一个 α \alpha α都有 U α = X α U_{\alpha}=X_{\alpha} Uα=Xα

  1. 对于有限积 ∏ X α \prod X_{\alpha} Xα,两种拓扑是一样的。
  2. 一般来说,箱拓扑细于积拓扑。

当我们讨论积空间 ∏ X α \prod X_{\alpha} Xα时,如果不特别申明,总是假定所给的就是积拓扑。

10. 度量拓扑

d d d是集合 X X X的一个度量,则全体 ϵ − \epsilon- ϵ B ( x , ϵ ) B(x,\epsilon) B(x,ϵ)的族,其中 x ∈ X , ϵ > 0 x\in X, \epsilon >0 xX,ϵ>0,是 X X X的某一个拓扑的基,这个拓扑称为由度量 d d d诱导出来的度量拓扑。
一个空间是否是可度量化的,仅仅依赖与空间的拓扑。
引理
d d d d ′ d' d是集合 X X X上的两个度量。 T \mathcal{T} T T ′ \mathcal{T}' T分别是由它们诱导的拓扑,则 T ′ \mathcal{T}' T细于 T \mathcal{T} T当且仅当对每一个 x ∈ X x\in X xX及每一个 ϵ > 0 \epsilon > 0 ϵ>0,使得
B d ′ ( x , δ ) ⊂ B d ( x , ϵ ) B_{d'}(x,\delta) \subset B_d (x,\epsilon) Bd(x,δ)Bd(x,ϵ)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值