反常积分收敛性与函数极限关系的探究

1. 两类反常积分之间的关系

无穷区间上的反常积分与无界函数的反常积分是可以互相转换的。

(1)不妨设 a > 0 a>0 a>0,则
∫ a + ∞ f ( x ) d x ( x = 1 t ) = − ∫ 1 a 0 1 t 2 f ( 1 t ) d t ( g ( t ) = 1 t 2 f ( 1 t ) ) = ∫ 0 1 a g ( t ) d t , \begin{align*} &\int_a^{+\infty}f(x)dx \qquad (x=\frac{1}{t})\\ =& -\int_{\frac{1}{a}}^0\frac{1}{t^2}f(\frac{1}{t})dt\qquad (g(t)=\frac{1}{t^2}f(\frac{1}{t}))\\ =& \int_0^{\frac{1}{a}}g(t)dt, \end{align*} ==a+f(x)dx(x=t1)a10t21f(t1)dt(g(t)=t21f(t1))0a1g(t)dt,
这就化成了无界函数的反常积分。
(2)设 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx是一个无界函数的反常积分, x = b x=b x=b f ( x ) f(x) f(x)的惟一奇点。令 t = b − a b − x t=\frac{b-a}{b-x} t=bxba,则
∫ a b f ( x ) d x = ( b − a ) ∫ 1 + ∞ f ( b − b − a t ) d t t 2 , \int_a^bf(x)dx = (b-a)\int_1^{+\infty}f(b-\frac{b-a}{t})\frac{dt}{t^2}, abf(x)dx=(ba)1+f(btba)t2dt,
等式右端就是一个无穷区间的反常积分。

2. 反常积分收敛性与函数极限的关系

以无穷区间的反常积分为例, f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+)有定义, lim ⁡ x → + ∞ f ( x ) = 0 \lim_{x\to +\infty}f(x)=0 limx+f(x)=0并不能保证 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛,如 ∫ 1 + ∞ 1 x p ( p ≤ 1 ) \int_1^{+\infty}\frac{1}{x^p}(p\leq 1) 1+xp1(p1)所示。

反之,若 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛,也不能保证 lim ⁡ x → + ∞ f ( x ) = 0 \lim_{x\to +\infty}f(x)=0 limx+f(x)=0,甚至无法保证 f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+)上有界。

证明: 设 f ( x ) f(x) f(x) [ 1 , + ∞ ) [1,+\infty) [1,+)按如下方式定义:
f ( x ) = { n + 1 , x ∈ [ n , n + 1 n ( n + 1 ) 2 ] , 0 , x ∈ ( n + 1 n ( n + 1 ) 2 , n + 1 ) , n = 1 , 2 , ⋯   . f(x)=\begin{cases} n+1,\quad &x\in [n,n+\frac{1}{n(n+1)^2}],\\ 0,\quad &x\in (n+\frac{1}{n(n+1)^2}, n+1), \end{cases} \qquad n = 1,2,\cdots. f(x)={n+1,0,x[n,n+n(n+1)21],x(n+n(n+1)21,n+1),n=1,2,.
那么对于任意 A > 1 A>1 A>1,总可以取自然数 n n n,使得 A ∈ [ n , n + 1 ) A\in [n,n+1) A[n,n+1),由于 f ( x ) ≥ 0 f(x)\geq 0 f(x)0,因此
∫ 1 n f ( x ) d x ≤ ∫ 1 A f ( x ) d x ≤ ∫ 1 n + 1 f ( x ) d x . \int_1^{n}f(x)dx\leq \int_1^{A}f(x)dx\leq \int_1^{n+1}f(x)dx. 1nf(x)dx1Af(x)dx1n+1f(x)dx.
n → + ∞ n\to +\infty n+时,
lim ⁡ n → ∞ ∫ 1 n f ( x ) d x = lim ⁡ n → ∞ [ ∫ 1 2 f ( x ) d x + ∫ 2 3 f ( x ) d x + ⋯ + ∫ n − 1 n f ( x ) d x ] = lim ⁡ n → ∞ [ 1 1 ⋅ 2 + 1 2 ⋅ 3 + 1 3 ⋅ 4 + ⋯ + 1 ( n − 1 ) ⋅ n ] = lim ⁡ n → ∞ [ ( 1 − 1 2 ) + ( 1 2 − 1 3 ) + ( 1 3 − 1 4 ) + ⋯ + ( 1 n − 1 − 1 n ) ] = lim ⁡ n → ∞ ( 1 − 1 n ) = 1. \begin{align*} \lim_{n\to \infty}\int_1^nf(x)dx &= \lim_{n\to \infty}[\int_1^2f(x)dx+\int_2^3f(x)dx+\cdots+\int_{n-1}^nf(x)dx]\\ &= \lim_{n\to \infty}[\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\frac{1}{3\cdot 4}+\cdots+\frac{1}{(n-1)\cdot n}]\\ &= \lim_{n\to \infty}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+\cdots+(\frac{1}{n-1}-\frac{1}{n})]\\ &= \lim_{n\to \infty}(1-\frac{1}{n}) = 1. \end{align*} nlim1nf(x)dx=nlim[12f(x)dx+23f(x)dx++n1nf(x)dx]=nlim[121+231+341++(n1)n1]=nlim[(121)+(2131)+(3141)++(n11n1)]=nlim(1n1)=1.
同理也有
lim ⁡ n → ∞ ∫ 1 n + 1 f ( x ) d x = 1. \lim_{n\to \infty}\int_{1}^{n+1}f(x)dx = 1. nlim1n+1f(x)dx=1.
由极限的夹逼性,有
∫ 1 + ∞ f ( x ) d x = lim ⁡ A → + ∞ ∫ 1 A f ( x ) d x = 1 , \int_1^{+\infty}f(x)dx = \lim_{A\to +\infty}\int_1^Af(x)dx = 1, 1+f(x)dx=A+lim1Af(x)dx=1,
f ( x ) f(x) f(x)显然是无界的。
注:即使 f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+)连续(甚至 n n n次可微),也可仿照上例构造出使 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛而 f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+)无界的例子。

3. 无穷区间反常积分收敛性的三个命题

(1)设 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛,且 lim ⁡ x → + ∞ f ( x ) = A \lim_{x\to +\infty}f(x)=A limx+f(x)=A,证明 A = 0 A=0 A=0

证明: 用反证法。
不妨设 A > 0 A>0 A>0,则对 ϵ = 1 2 A > 0 \epsilon=\frac{1}{2}A>0 ϵ=21A>0 ∃ X > a \exists X>a X>a ∀ x > X \forall x>X x>X,成立 ∣ f ( x ) − A ∣ < 1 2 A |f(x)-A|<\frac{1}{2}A f(x)A<21A,即 f ( x ) > 1 2 A f(x)>\frac{1}{2}A f(x)>21A。由
∫ a B f ( x ) d x = ∫ a X f ( x ) d x + ∫ X B f ( x ) d x > ∫ a X f ( x ) d x + 1 2 A ( B − X ) , \int_a^Bf(x)dx = \int_a^Xf(x)dx+\int_X^Bf(x)dx > \int_a^Xf(x)dx+ \frac{1}{2}A(B-X), aBf(x)dx=aXf(x)dx+XBf(x)dx>aXf(x)dx+21A(BX),
可知 lim ⁡ B → + ∞ ∫ a B f ( x ) d x = + ∞ \lim_{B\to +\infty}\int_a^Bf(x)dx=+\infty limB+aBf(x)dx=+,与 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛矛盾。

(2)设 f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+)上可导,且 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx ∫ a + ∞ f ′ ( x ) d x \int_a^{+\infty}f'(x)dx a+f(x)dx都收敛,证明 lim ⁡ x → + ∞ f ( x ) = 0 \lim_{x\to +\infty}f(x)=0 limx+f(x)=0

证明:
∫ a + ∞ f ′ ( x ) d x = ∫ a + ∞ d ( f ( x ) ) = lim ⁡ x → + ∞ f ( x ) − f ( a ) \int_a^{+\infty}f'(x)dx = \int_a^{+\infty}d(f(x)) = \lim_{x\to +\infty}f(x) - f(a) a+f(x)dx=a+d(f(x))=x+limf(x)f(a)
∫ a + ∞ f ′ ( x ) d x \int_a^{+\infty}f'(x)dx a+f(x)dx的收敛性,可知 lim ⁡ x → + ∞ f ( x ) \lim_{x\to +\infty}f(x) limx+f(x)存在且有限,再利用上面的命题,得到
lim ⁡ x → + ∞ f ( x ) = 0 \lim_{x\to +\infty}f(x)=0 x+limf(x)=0

(3)设 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛,且 f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+)一致连续,则 lim ⁡ x → + ∞ f ( x ) = 0 \lim_{x\to +\infty}f(x)=0 limx+f(x)=0

证明: 用反证法。
若在所给的条件下,当 x → + ∞ x\to +\infty x+ f ( x ) f(x) f(x)不趋于0,则由极限定义,存在 ϵ 0 > 0 \epsilon_0>0 ϵ0>0,对于任意给定的 X > a X>a X>a,存在 x 0 > X x_0>X x0>X,使得
∣ f ( x 0 ) ∣ ≥ ϵ 0 . |f(x_0)|\geq \epsilon_0. f(x0)ϵ0.
又因为 f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+)上一致连续,故存在 δ 0 ∈ ( 0 , 1 ) \delta_0\in (0,1) δ0(0,1),使得对于任意 x ′ , x " > a x',x">a x,x">a,只要 ∣ x ′ − x " ∣ < δ 0 |x'-x"|<\delta_0 xx"∣<δ0,就有
∣ f ( x ′ ) − f ( x " ) ∣ < ϵ 0 2 . |f(x')-f(x")|<\frac{\epsilon_0}{2}. f(x)f(x")<2ϵ0.
ϵ 1 = ϵ 0 δ 0 2 \epsilon_1=\frac{\epsilon_0\delta_0}{2} ϵ1=2ϵ0δ0,对于任意给定的 A 0 ≥ a A_0\geq a A0a,取 X = A 0 + 1 X=A_0+1 X=A0+1,并设 x 0 > X x_0>X x0>X满足 ∣ f ( x 0 ) ∣ ≥ ϵ 0 |f(x_0)|\geq \epsilon_0 f(x0)ϵ0。不妨设 f ( x 0 ) > 0 f(x_0)>0 f(x0)>0,则对于任意满足 ∣ x 0 − x ∣ < δ 0 |x_0-x|<\delta_0 x0x<δ0 x x x,有
f ( x ) > f ( x 0 ) − ϵ 0 2 ≥ ϵ 0 2 > 0. f(x)>f(x_0)-\frac{\epsilon_0}{2}\geq \frac{\epsilon_0}{2}>0. f(x)>f(x0)2ϵ02ϵ0>0.
A A A A ′ A' A分别等于 x 0 − δ 0 2 x_0-\frac{\delta_0}{2} x02δ0 x 0 + δ 0 2 x_0+\frac{\delta_0}{2} x0+2δ0,则 A ′ > A > A 0 A'>A>A_0 A>A>A0,且有
∣ ∫ A A ′ f ( x ) d x ∣ = ∣ ∫ x 0 − δ 0 2 x 0 + δ 0 2 f ( x ) d x ∣ > ϵ 0 2 δ 0 = ϵ 1 . |\int_A^{A'}f(x)dx|=|\int_{x_0-\frac{\delta_0}{2}}^{x_0+\frac{\delta_0}{2}}f(x)dx|>\frac{\epsilon_0}{2}\delta_0=\epsilon_1. AAf(x)dx=x02δ0x0+2δ0f(x)dx>2ϵ0δ0=ϵ1.
由Cauchy收敛原理, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx不收敛,与假设条件矛盾,于是 lim ⁡ x → + ∞ f ( x ) = 0 \lim_{x\to +\infty}f(x)=0 limx+f(x)=0

4. 参考文献

《数学分析》(第三版 上册)陈纪修, 於崇华,金路

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值