1.集合及其运算
1.1 集合族
定义 1
设
Λ
\Lambda
Λ 是一集合,
∀
\forall
∀
λ
\lambda
λ
∈
\in
∈
Λ
\Lambda
Λ, 都指定一个集合
A
λ
A_\lambda
Aλ,这些集合的全体称为集合族,记为{
A
λ
A_\lambda
Aλ :
λ
\lambda
λ
∈
\in
∈
Λ
\Lambda
Λ}
1.2 幂集
定义 2
给定集合
A
A
A,
A
A
A 的幂集(Power Set)
℘
\weierp
℘
(
\lparen
(
A
A
A
)
\rparen
) 是集合
A
A
A的子集全体,即
℘
(
A
)
=
{
B
:
B
⊂
A
}
.
\wp(A) = \{ B: B\subset A\}.
℘(A)={B:B⊂A}.
例2
℘
(
{
a
,
b
}
)
=
{
∅
,
{
a
}
,
{
b
}
,
{
a
,
b
}
}
\weierp(\{a,b\}) = \{\empty,\{a\},\{b\},\{a,b\}\}
℘({a,b})={∅,{a},{b},{a,b}}
对于任何集合
A
A
A,成立
∅
,
A
∈
℘
(
A
)
\empty,A\in \wp(A)
∅,A∈℘(A)
℘
(
∅
)
=
{
∅
}
\wp(\empty) = \{\empty\}
℘(∅)={∅}
℘
(
{
∅
}
)
=
{
∅
,
{
∅
}
}
\wp(\{\empty\}) = \{\empty,\{\empty\}\}
℘({∅})={∅,{∅}};
例3
设
f
(
x
)
f(x)
f(x) 是定义在
R
\R
R 上的实值函数,则
⋃
n
=
1
∞
{
x
:
∣
f
(
x
)
∣
⩽
n
}
=
{
x
:
f
(
x
)
∈
R
}
=
R
;
\bigcup_{n=1}^{\infin}\{x:|f(x)|\leqslant n\} = \{x:f(x)\in\R\} = \R;
n=1⋃∞{x:∣f(x)∣⩽n}={x:f(x)∈R}=R;
{
x
:
∣
f
(
x
)
∣
>
0
}
=
⋃
n
=
1
∞
{
x
:
∣
f
(
x
)
∣
>
1
/
n
}
;
\{x:|f(x)|>0\} = \bigcup_{n=1}^{\infin}\{x:|f(x)|> 1/n\};
{x:∣f(x)∣>0}=n=1⋃∞{x:∣f(x)∣>1/n};
{
x
:
∣
f
(
x
)
∣
=
0
}
=
⋂
n
=
1
∞
{
x
:
∣
f
(
x
)
∣
⩽
1
/
n
}
;
\{x:|f(x)|=0\} =\bigcap_{n=1}^{\infin}\{x:|f(x)|\leqslant 1/n\};
{x:∣f(x)∣=0}=n=1⋂∞{x:∣f(x)∣⩽1/n};
例4
2.集合序列的极限
定义 1
设
{
A
n
}
\{A_n\}
{An} 是一列集合。
(1)若
A
1
⊃
A
2
⊃
⋯
⊃
A
n
⊃
…
A_1\supset A_2\supset \dots \supset A_n \supset \dots
A1⊃A2⊃⋯⊃An⊃… ,则称此集列为
递减集列(或渐缩集列)
\textcolor{red}{递减集列(或渐缩集列)}
递减集列(或渐缩集列)。其交集
⋂
n
=
1
∞
A
n
\bigcap_{n=1}^{\infin}A_n
⋂n=1∞An 为集列
{
A
n
}
\{A_n\}
{An} 的极限集,记为
lim
n
→
∞
A
n
\lim_{n \to \infin} A_n
limn→∞An;
(2)若
A
1
⊂
A
2
⊂
⋯
⊂
A
n
⊂
…
A_1\subset A_2\subset \dots \subset A_n \subset \dots
A1⊂A2⊂⋯⊂An⊂… ,则称此集列为
递增集列(或渐张集列)
\textcolor{red}{递增集列(或渐张集列)}
递增集列(或渐张集列)。其并集
⋃
n
=
1
∞
A
n
\bigcup_{n=1}^{\infin}A_n
⋃n=1∞An 为集列
{
A
n
}
\{A_n\}
{An} 的极限集,记为
lim
n
→
∞
A
n
\lim_{n \to \infin} A_n
limn→∞An.
例6
例7
例9
3.映射
定义 1
设
X
,
Y
X,Y
X,Y 是两个集合。
如果按某种对应关系或者法则
f
f
f,使得
∀
x
∈
X
,
Y
中有唯一的元
y
与之对应,
\forall x \in X,Y中有唯一的元 y 与之对应,
∀x∈X,Y中有唯一的元y与之对应,
则称
f
f
f 为从
X
X
X 到
Y
Y
Y 的一个映射,记为
f
:
X
→
Y
,
x
↦
y
=
f
(
x
)
f: X \to Y, \newline x \mapsto y = f(x)
f:X→Y,x↦y=f(x)
y
y
y 称为
x
x
x 在映射
f
f
f 下的像,
x
x
x 称为
y
y
y 在
f
f
f 下的原像。
定义2
给定映射
f
:
X
→
Y
,
A
⊂
X
f:X \to Y,A\subset X
f:X→Y,A⊂X. 定义
f
(
A
)
:
=
{
f
(
x
)
∣
x
∈
A
}
,
f(A):= \{f(x)|x\in A\},
f(A):={f(x)∣x∈A},
为集合
A
A
A 在映射
f
f
f 下的像。设
B
⊂
Y
B\subset Y
B⊂Y,定义
f
−
1
(
B
)
:
=
{
x
∈
X
∣
f
(
x
)
∈
B
}
f^{-1}(B) := \{x\in X|f(x) \in B\}
f−1(B):={x∈X∣f(x)∈B}
为集合
B
B
B 在映射
f
f
f 下的原像。
4.集合的等价、基数
定义 1
设有集合
A
,
B
A,B
A,B. 若存在一个从
A
A
A 到
B
B
B 上的双射,则称集合
A
A
A 与
B
B
B 对等,记为
A
∼
B
A \thicksim B
A∼B。
对等关系的性质:
- 自反性: A ∼ A A\thicksim A A∼A;
- 对称性:若 A ∼ B A\thicksim B A∼B,则 B ∼ A B \thicksim A B∼A;
- 传递性:若 A ∼ B A\thicksim B A∼B, B ∼ C B\thicksim C B∼C,则 A ∼ C A\thicksim C A∼C.
定义 2
集合的基数:一个集合中所包含的元素的个数。记作
C
a
r
d
(
A
)
Card(A)
Card(A)。
- 集合的基数是集合固有的特征;
- 每一个集合都具有唯一的基数,对等的集合具有相同的基数。
定义 3
若有正整数
n
n
n,使得集合
A
∼
{
1
,
2
,
…
,
n
}
A\thicksim \{1,2,\dots,n\}
A∼{1,2,…,n},则称
A
A
A 为有限集;否则称为无限集。
若集合与自然集合具有相同的基数,则称这个集合是可数的。把有限集和可数集统称为至多可数集。
不是有限集或可数集的集合称为不可数集。
命题 1
(1)整数集
Z
\Z
Z 是可数集;
(2)任一无限集必包含一个可数子集;
(3)可数集的任意无限子集是可数集;
(4)可数多个至多可数集的并是可数集;
(5)有理数集
Q
\mathbb{Q}
Q 是可数集。
例 12
R
\R
R 中任一两两不相交的开区间族中的元至多可数。
命题 2
设
A
A
A 是无限集,
B
B
B 是至多可数集,则
A
∼
A
∪
B
A\thicksim A\cup B
A∼A∪B
证明:
不妨设
A
∩
B
=
∅
A\cap B = \empty
A∩B=∅. 设
A
1
⊂
A
A_1\subset A
A1⊂A 是一个可数子集,则
A
1
∪
B
A_1 \cup B
A1∪B 是可数集。于是有
A
\
A
1
∼
A
\
A
1
,
A
1
∼
A
1
∪
B
,
A \backslash A_1\thicksim A \backslash A_1, A_1 \thicksim A_1 \cup B,
A\A1∼A\A1,A1∼A1∪B,
且
(
A
\
A
1
)
∩
A
1
=
∅
,
(
A
\
A
1
)
∩
(
A
1
∪
B
)
=
∅
(A\backslash A_1)\cap A_1 = \empty,(A\backslash A_1)\cap (A_1\cup B)= \empty
(A\A1)∩A1=∅,(A\A1)∩(A1∪B)=∅. 因此有
A
=
(
A
\
A
1
)
∪
A
1
∼
(
A
\
A
1
)
∪
(
A
1
∪
B
)
=
A
∪
B
.
A = (A\backslash A_1)\cup A_1 \thicksim (A\backslash A_1)\cup (A_1\cup B) = A\cup B.
A=(A\A1)∪A1∼(A\A1)∪(A1∪B)=A∪B.
无限集加入一个至多可数集后,其“个数”不变。
定理 1
闭区间
[
0
,
1
]
[0,1]
[0,1] 是不可数集。
证明:
定义 4
与
[
0
,
1
]
[0,1]
[0,1] 对等的集合称为有连续统势。如
[
a
,
b
]
[a,b]
[a,b] 有连续统势。
设
n
n
n 为大于
1
1
1 的自然数。若数列
{
a
k
}
k
⩾
1
\{a_k\}_{k\geqslant 1}
{ak}k⩾1 中的项仅由
0
,
1
,
2
,
…
,
n
−
1
0,1,2,\dots,n-1
0,1,2,…,n−1 这
n
n
n 个数组成,则称
{
a
k
}
k
⩾
1
\{a_k\}_{k\geqslant 1}
{ak}k⩾1 为一个 n元数列;若
{
a
k
}
k
⩾
1
\{a_k\}_{k\geqslant 1}
{ak}k⩾1 只有有限项不为
0
0
0,则
{
a
k
}
k
⩾
1
\{a_k\}_{k\geqslant 1}
{ak}k⩾1 称为有限n元数列,不然称为无限n元数列。
定理 2
任何区间具有连续统势。
定理 3
设
n
⩾
2
n\geqslant 2
n⩾2,则
n
n
n元数列全体有连续统势。
证明:
定理 4
可数集的子集全体有连续统势。
证明:
定理 5
至多可数个有连续统势的集的直积全体有连续统势。
推论
- 平面 R 2 \R^2 R2、空间 R 3 \R^3 R3 都有连续统势;
- 实数列全体有连续统势。
定理 6
设
A
0
,
A
1
,
A
2
A_0,A_1,A_2
A0,A1,A2 是三个集合,满足
A
0
⊃
A
1
⊃
A
2
A_0 \supset A_1 \supset A_2
A0⊃A1⊃A2
若
A
0
∼
A
2
A_0\thicksim A_2
A0∼A2,则
A
0
∼
A
1
A_0\thicksim A_1
A0∼A1.
证明:
5. R n \R^n Rn 的拓扑
5.1 邻域与极限
定义 1 (邻域)
若
x
0
∈
R
n
x_0\in\R^n
x0∈Rn,
ϵ
>
0
\epsilon > 0
ϵ>0,称
N
(
x
,
ϵ
)
=
{
x
∈
R
n
:
d
(
x
,
x
0
)
<
ϵ
}
N(x,\epsilon) = \{x \in \R^n:d(x,x_0)<\epsilon\}
N(x,ϵ)={x∈Rn:d(x,x0)<ϵ} 为
x
0
x_0
x0 的
ϵ
\epsilon
ϵ 邻域,简称邻域,其中
x
0
x_0
x0 为邻域的中心,
ϵ
\epsilon
ϵ 为邻域的半径。有时邻域也记成
N
(
x
0
)
N(x_0)
N(x0)。
定义 2(极限)
若
x
0
∈
R
n
x_0\in\R^n
x0∈Rn,
{
x
k
}
k
⩾
1
⊂
R
n
\{x_k\}_{k\geqslant 1}\subset\R^n
{xk}k⩾1⊂Rn,且
lim
k
→
∞
d
(
x
k
,
x
0
)
=
0
,
\lim_{k \to \infin} d(x_k,x_0) = 0,
k→∞limd(xk,x0)=0, 则称
{
x
k
}
k
⩾
1
\{x_k\}_{k\geqslant 1}
{xk}k⩾1 收敛于
x
0
x_0
x0,记为
lim
k
→
∞
x
k
=
x
0
\lim_{k \to \infin}x_k = x_0
limk→∞xk=x0。
5.2 点集
定义 3
设 E ⊂ R n , x ∈ R n . E\subset \R^n,x\in\R^n. E⊂Rn,x∈Rn.
- 内点:若 ∃ δ > 0 \exist\delta>0 ∃δ>0,使 N ( x , δ ) ⊂ E N(x,\delta)\subset E N(x,δ)⊂E,则称 x x x 为 E E E 的内点; E E E 的所有内点构成的集合称为 E E E 的內域,记为 E ∘ E^\circ E∘。
- 外点:若 ∃ δ > 0 \exist\delta>0 ∃δ>0,使 N ( x , δ ) ⊂ E c N(x,\delta)\subset E^c N(x,δ)⊂Ec(或者 N ( x , δ ) ∩ E = ∅ N(x,\delta)\cap E = ∅ N(x,δ)∩E=∅,则称 x x x 为 E E E 的外点; E E E 的所有外点构成的集合称为 E E E 的外域,记为 ( E c ) ∘ (E^c)^\circ (Ec)∘。
- 边界点:若 ∀ δ > 0 \forall \delta >0 ∀δ>0 ,有 N ( x , δ ) ∩ E ≠ ∅ N(x,\delta)\cap E \not =∅ N(x,δ)∩E=∅ 且 N ( x , δ ) ∩ E c ≠ ∅ N(x,\delta)\cap E^c \not = ∅ N(x,δ)∩Ec=∅ ,则称 x x x 为 E E E 的边界点; E E E 的所有边界点构成的集合称为 E E E 的边界,记为 E b E^b Eb 或 ∂ E {\partial E} ∂E。
- 聚点:若对 x x x 的任意邻域 N ( x ) N(x) N(x) 都含有异于 x x x 的 E E E 中的点,则称 x x x 为 E E E 的聚点; E E E 的所有聚点构成的集合称为 E E E 的导集,记为 E ′ E' E′;称 E ∪ E ′ E \cup E' E∪E′ 为 E E E 的闭包,记作 E ‾ \overline{E} E。
- 孤立点:点集 E E E 的不是聚点的边界点称为 E E E 的孤立点。
注意:
- 内点、外点和边界点是互不相容的;
- 内点总是属于 E E E;
- 外点总是不属于 E E E;
- E E E 的边界点可能属于 E E E,也可能不属于 E E E;
- E E E 的聚点可能属于 E E E,也可能不属于 E E E。
- E E E 的内点一定是 E E E 的聚点,反之则未必成立。
- E E E 的外点一定不是聚点。
- E E E 的边界点可能是 E E E 的聚点,也可能不是 E E E 的聚点(如孤立点)。
- x ∈ E ‾ ⇔ ∀ N ( x ) , N ( x ) ∩ E ≠ ∅ x\in \overline{E}\lrArr \forall N(x),N(x)\cap E\not = \empty x∈E⇔∀N(x),N(x)∩E=∅;
- E E E 的孤立点一定属于 E E E;
- x x x 为 E E E 的孤立点 ⇔ ∃ N ( x , δ ) \lrArr \exist N(x,\delta) ⇔∃N(x,δ),使得 N ( x , δ ) ∩ E = { x } N(x,\delta)\cap E = \{x\} N(x,δ)∩E={x}。
- 聚点、外点、孤立点(属于边界点)是不相容的。
定义 4
设 E ⊂ R n E\subset \R^n E⊂Rn.
- 开集:若 E E E 中每一个点都是 E E E 的内点,则 E E E 是开集。 R n \R^n Rn 为开集,规定 ∅ \empty ∅ 为开集。
- 闭集:若 E E E 的每一个聚点都属于 E E E,即 E ′ ⊂ E E'\subset E E′⊂E,则 E E E 是闭集。 R n \R^n Rn 为闭集,规定 ∅ \empty ∅ 也为闭集。
- 自密集:若 E E E 中每一个点都是 E E E 的聚点,即 E ⊂ E ′ E\subset E' E⊂E′,则 E E E 是自密集。
- 完备集:自密的闭集称为完备集或完全集。 R n \R^n Rn 和 ∅ \empty ∅ 都为完备集。
- 孤立集:若 E E E 中每一个点都是孤立点,则 E E E 是孤立集。
- 离散集:若 E ′ = ∅ E' = \empty E′=∅,则 E E E 是离散集。
- 稠密集:若 E ‾ = R n \overline E = \R^n E=Rn,则称 E E E 是 R n \R^n Rn 中的稠密集。若 E ‾ \overline E E 不包括任何邻域,则称 E E E 是无处稠密集或疏朗集。例如,有理数集 Q \mathbb{Q} Q 为 R \R R 中的稠密集,整数集 Z \Z Z 为 R \R R 中的疏朗集。
注意:
- 一个集合是否为开集与该集合所在的空间有关系. 如 ( 0 , 1 ) (0,1) (0,1) 是 R \R R 中的开集,但若将其看作 R 2 \R^2 R2 中的点集,即 ( 0 , 1 ) × { 0 } (0,1)\times \{0\} (0,1)×{0} 时,则不是开集;
- E E E 为闭集 ⇔ E = E ‾ ⇔ E b ⊂ E \lrArr E=\overline E \lrArr E^b\subset E ⇔E=E⇔Eb⊂E ;
- E E E 为自密集 ⇔ E ′ = E ‾ \lrArr E'=\overline E ⇔E′=E ;
- E E E 为完备集 ⇔ E = E ′ \lrArr E=E' ⇔E=E′ ;
- E E E 为孤立集 ⇔ E ∩ E ′ = ∅ \lrArr E\cap E'=\empty ⇔E∩E′=∅;
- 孤立集为至多可数集(证明如下图);
- 离散集都是孤立集,但孤立集不一定是离散集。如点集 { 1 , 1 / 2 , ⋯ , 1 / n , ⋯ } \{1,1/2,\cdots,1/n,\cdots\} {1,1/2,⋯,1/n,⋯} 为孤立集,但 E ′ = { 0 } E' = \{0\} E′={0},所以 E E E 不是离散集;
定理 1
若
A
⊂
B
A\subset B
A⊂B,则
A
∘
⊂
B
∘
A^\circ \subset B^\circ
A∘⊂B∘,
A
′
⊂
B
′
A'\subset B'
A′⊂B′,
A
‾
⊂
B
‾
\overline A\subset \overline B
A⊂B。
定理 2
(
A
∪
B
)
′
=
A
′
∪
B
′
(A\cup B)'=A'\cup B'
(A∪B)′=A′∪B′;一般地,
(
A
∩
B
)
′
≠
A
′
∩
B
′
(A\cap B)'\not=A'\cap B'
(A∩B)′=A′∩B′。
定理 3 (Bolzano-Weierstrass 定理)
若
E
E
E 为
R
n
\R^n
Rn 中的有界无穷集,则
E
E
E 中至少有一个聚点,即
E
′
≠
∅
E'\not=\empty
E′=∅。
注:一维情况下,可用闭区间套定理证明。
\textcolor{red}{注:一维情况下,可用闭区间套定理证明。}
注:一维情况下,可用闭区间套定理证明。
定理 4
设
E
⊂
R
n
E\subset \R^n
E⊂Rn,则
E
∘
E^\circ
E∘ 为开集,
E
′
E'
E′ 和
E
‾
\overline E
E 为闭集。
定理 5
开集的补集为闭集,闭集的补集为开集。
定理 6
- 任意多个闭集的交是闭集,有限多个闭集的并是闭集;
- 任意多个开集的并是开集,有限多个开集的交是开集。
注意
任意多个闭集的并不一定是闭集,任意多个开集的交不一定是开集。
\textcolor{red}{任意多个闭集的并不一定是闭集,任意多个开集的交不一定是开集。}
任意多个闭集的并不一定是闭集,任意多个开集的交不一定是开集。
例如:
⋃
n
=
1
∞
[
−
1
+
1
/
n
,
1
−
1
/
n
]
=
(
−
1
,
1
)
\bigcup_{n=1}^{\infin}[-1+1/n,1-1/n]=(-1,1)
⋃n=1∞[−1+1/n,1−1/n]=(−1,1)
⋂
n
=
1
∞
(
−
1
/
n
,
1
/
n
)
=
{
0
}
\bigcap_{n=1}^{\infin}(-1/n,1/n)=\{0\}
⋂n=1∞(−1/n,1/n)={0}
定理7(开集的构造定理)
实数集
R
\R
R 上的非空开集
G
G
G 一定是至多可数个互不相交的开区间的并集,并且这些开区间的端点都不属于
G
G
G。
定理 8
R
\R
R 中的集
F
F
F 是完备的充要条件是
F
c
=
R
F^c= \R
Fc=R \
F
F
F 是至多可数个互不相交且无公共端点的开区间的并。
定义 5
R
\R
R 中的 Cantor 完备集
性质