共轭梯度法学习通解

共轭梯度法(Conjugate Gradient Method)是一种常用的无约束优化算法,用于求解大规模线性方程组或最小化二次函数的问题。它是一种迭代算法,每次迭代只需要进行一次线性搜索,因此可以有效地解决高维问题和大规模数据集的优化问题。

共轭梯度法的基本思路是在每一次迭代中,沿着已知的共轭方向进行搜索,以获得更快的收敛速度。共轭方向的定义是:对于一个对称正定矩阵A,如果两个向量p和q满足p^TAq=0,则称它们是A共轭的。

在具体实现上,共轭梯度法首先需要计算出梯度和初始搜索方向,然后进行迭代,每次迭代更新搜索方向、步长和梯度,直到达到一定的迭代次数或收敛条件。下面是共轭梯度法的基本步骤:

  1. 初始化:设初始点x0,初始梯度g0=f'(x0),初始搜索方向d0=-g0。
  2. 迭代:对于每一次迭代k=0,1,2,...,执行以下步骤: a. 以dk为搜索方向,计算步长αk,即使得f(xk+αkdk)最小化的αk值。 b. 更新当前位置xk+1=xk+αkdk。 c. 计算新梯度gk+1=f'(xk+1)。 d. 计算βk,即使得dk+1是A共轭于dk的方向的标量,即βk=(gk+1^Tgk+1)/(gk^Tgk)。 e. 更新搜索方向dk+1=-gk+1+βkdk。 f. 如果满足终止条件,则停止迭代。

共轭梯度法具有快速收敛、内存占用小等优点,因此被广泛应用于机器学习、信号处理、计算机图形学等领域。

以下是使用共轭梯度法求解最小二乘问题的 Python 代码示例:

import numpy as np

# 定义目标函数:f(x) = (x - 2)^2 + (2x + 1)^2
def func(x):
    return (x - 2) ** 2 + (2 * x + 1) ** 2

# 定义目标函数的一阶导数:f'(x) = 10x + 6
def grad(x):
    return 10 * x + 6

# 定义共轭梯度法函数
def conjugate_gradient(func, grad, x0, max_iter=100, tol=1e-6):
    x = x0
    g = grad(x)
    d = -g
    for i in range(max_iter):
        alpha = -np.dot(g, d) / np.dot(d, np.dot(H, d))
        x = x + alpha * d
        g_new = grad(x)
        beta = np.dot(g_new, g_new) / np.dot(g, g)
        d = -g_new + beta * d
        g = g_new
        if np.linalg.norm(g) < tol:
            break
    return x

# 定义初始点 x0
x0 = np.array([0.0])

# 使用共轭梯度法求解最小二乘问题
x_min = conjugate_gradient(func, grad, x0)

# 输出最小值及对应的 x 值
print("Minimum value:", func(x_min))
print("x value at the minimum:", x_min)

在上述示例中,我们首先定义了目标函数和其一阶导数,然后定义了共轭梯度法函数 conjugate_gradient。在这个函数中,我们使用了共轭梯度法的基本步骤来求解最小二乘问题。其中,max_itertol 分别为最大迭代次数和收敛精度。

最后,我们使用初始点 x0 和 conjugate_gradient 函数求解最小二乘问题,并输出最小值及对应的 x 值。

以下是另一个使用共轭梯度法求解最小二乘问题的 Python 代码示例:

import numpy as np

# 定义目标函数:f(x) = x^T A x - b^T x
A = np.array([[4, 1], [1, 3]])
b = np.array([1, 2])
def func(x):
    return np.dot(x, np.dot(A, x)) - np.dot(b, x)

# 定义目标函数的一阶导数:f'(x) = 2Ax - b
def grad(x):
    return 2 * np.dot(A, x) - b

# 定义共轭梯度法函数
def conjugate_gradient(func, grad, x0, max_iter=100, tol=1e-6):
    x = x0
    g = grad(x)
    d = -g
    for i in range(max_iter):
        alpha = -np.dot(g, d) / np.dot(d, np.dot(A, d))
        x = x + alpha * d
        g_new = grad(x)
        beta = np.dot(g_new, g_new) / np.dot(g, g)
        d = -g_new + beta * d
        g = g_new
        if np.linalg.norm(g) < tol:
            break
    return x

# 定义初始点 x0
x0 = np.array([0.0, 0.0])

# 使用共轭梯度法求解最小二乘问题
x_min = conjugate_gradient(func, grad, x0)

# 输出最小值及对应的 x 值
print("Minimum value:", func(x_min))
print("x value at the minimum:", x_min)

在这个示例中,我们定义了目标函数和其一阶导数,这里的目标函数是二次型。然后定义了共轭梯度法函数 conjugate_gradient,其中的基本步骤与上一个示例相同。

最后,我们使用初始点 x0 和 conjugate_gradient 函数求解最小二乘问题,并输出最小值及对应的 x 值。需要注意的是,在这个示例中,x 是二维向量。

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值