[ComfyUI]最强移除物体工作流!收藏这个就够了(万物移除工作流)

哈喽这里是海绵

一、介绍

今天分享一个收藏很久的物体删除的工作流,好用,里面的原理值得借鉴学习,算是酒瓶装新酒吧。

二、工作流介绍

先看完整工作流

图片

工作流说明:

  • 先用以前的Fooocus局部重绘先做一次处理
  • 接入最新的Flux局部重绘,对遮罩去区域做优化
  • 把生成的局部区域的图贴回原图

操作说明:

  • 上传图片
  • 遮罩框选
Fooocus局部重绘首次消除

图片

这个是以前比较好用的Fooocus局部重绘,先利用lama先消除,然后采样一次生成首次的图,这时候的图质量还是不大好的,消除的细节有瑕疵。

Flux重绘回填

图片

这个是Flux局部重绘的工作流,首次生成的图有瑕疵,所以我们再接一个Flux,利用Flux的能力去做优化,最后利用混合局部重绘,把修复的区域回填到原图,这样就实现了更好的效果。

来看几张效果对比,个人感觉比最早只用Fooocus或者BrushNet效果更好。

图片

图片

图片

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

请添加图片描述

一、ComfyUI配置指南
  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

二、ComfyUI基础入门
  • 软件安装篇
  • 插件安装篇

三、 ComfyUI工作流节点/底层逻辑详解
  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

四、ComfyUI节点技巧进阶/多模型串联
  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

在这里插入图片描述

五、ComfyUI遮罩修改重绘/Inpenting模块详解
  • 图像分辨率
  • 姿势

在这里插入图片描述

六、ComfyUI超实用SDXL工作流手把手搭建
  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

在这里插入图片描述

在这里插入图片描述

这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

请添加图片描述

### ComfyUI 电商工作流实现与配置 #### 选择ComfyUI的理由及其优势 ComfyUI 是一款专为电商设计的强大图像处理工具,能显著提升工作效率。通过一系列预设的工作流节点和插件支持,可以轻松完成诸如模特换装、背景替换等复杂操作[^2]。 #### 下载安装方法 为了开始使用ComfyUI,在官方文档中提供了详细的下载指南。确保按照说明正确设置环境变量,并安装必要的依赖库。这一步骤至关重要,因为任何遗漏都可能导致后续流程出现问题。 #### 模型与插件的安装 除了基础软件外,还需要额外加载特定于电商应用的模型和插件。这些资源通常可以从社区论坛获取,或是购买商业授权版本获得更专业的服务和支持。特别推荐用于增强效果的 icLight 和 Image Detail Transfer 插件,它们能极大改善最终输出的质量[^4]。 #### 工作流节点和底层逻辑详解 构建一个完整的电商图片处理流水线涉及多个关键步骤: - **输入源准备**:上传原始商品照片至平台; - **初步调整**:利用内置滤镜去除不必要的干扰因素; - **主体分割**:精确提取目标对象轮廓以便后期合成; - **背景创建/选取**:挑选合适的替代背景素材; - **融合优化**:将分离出来的物体无缝嵌入新环境中; - **光照匹配**:模拟自然光源照射角度使画面更加逼真; - **细节修饰**:最后对成品进行全面润色直至满意为止[^1]。 ```python import comfyui as cui # 初始化项目实例 project = cui.Project() # 添加初始图像文件路径到队列中 project.add_image('path/to/source/image.jpg') # 应用基本清理过滤器移除噪点和其他瑕疵 project.apply_filter(cui.BasicCleanup()) # 执行智能裁剪以聚焦主要展示区域 project.smart_crop() # 更改背景颜色或图案 new_background = 'path/to/new/background.png' project.change_background(new_background) # 调整整体色调使其看起来更为协调统一 project.adjust_tone() # 导出编辑后的高质量JPEG格式图片 output_path = 'path/to/output/final_product.jpeg' project.export(output_path) ``` #### 遮罩修改重绘(Inpainting)模块的应用 当遇到难以自动识别的情况时,可以通过手动绘制蒙版来指导算法更好地理解和处理特殊部位。此过程不仅限于简单的擦除修复,还可以用来创造性的改变服装样式或其他视觉特征。 #### SDXL工作流手把手搭建 针对更高阶的需求,如批量生产带有不同风格变化的商品宣传照,则需进一步探索 Stable Diffusion eXtended Library (SDXL),这是一个基于深度学习框架开发而成的功能扩展包,允许用户自定义参数组合从而生成独一无二的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值