python-Tushare金融量化获取数据小案例

由于Python具有便捷的开发方式和丰富的工具库,在科学计算领域特别强大,因此在量化投资领域得到广泛应用。目前市面上涌现了许多支持Python语言的量化平台,比如掘金量化V3.0终端。通过掘金3,您可以轻松实现个人的Python交易策略模型,并进行策略模型的回测、仿真、以及实盘交易,还可自定义风险控制。该平台还提供了大量经典的量化策略示例,供用户提取使用,这大大节省了量化投资者开发Python策略模型的时间,也极大地提升了策略开发的效率。 

首先导包,把numpy,pandas等模块导入,在导入tushare模块

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tushare as ts

 tushare社区更新了,改成tushare pro 我们首先要注册自己账号,获取token秘钥。

图一 秘钥接口 

 我们要获取一些简单数据(证券数据)。

ts.set_token('你的token')
df = ts.realtime_tick(ts_code='600519.SH')
df

具体情况可以看官网,网址:Tushare数据

简单案例分析:获取了一下600702证劵历史数据了 (以前的接口是get_k_data改成了pro_bar)

ts.set_token('你的token')
df = ts.pro_bar(ts_code='600702.SH', adj='qfq',end_date='20240115')
df.to_csv("600702.csv")
df

这里有明确讲解数据接口的使用 :

仅供学习参考; 

输出该股票所有收盘比开盘上涨3%以上的日期
 

 df[(df['close']-df['open'])/df['open']>=0.03]

 输出该股票所有开盘比前日收盘跌幅超过2%的日期

df[(df['open']-df['close'].shift(1))/df['close'].shift(1)<=-0.02]

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值