保姆级教你轻松在本地部署deepseek+Chatbox AI

目录

前言:

一、安装ollama

二、安装奇游加速器(优点:避免deepseek模型下载缓慢)

三、下载模deepseek模型

四、下载安装Chatbox AI (使deepseek有UI界面)


前言:

近年来,DeepSeek凭借其强大的语言理解能力和广泛的应用场景,成为众多AI领域的焦点。由于deepseek经常会出现服务器繁忙,请稍后再试,所以本技术探索其本地部署方式,无需联网也能使用,即可规避服务器繁忙。以高度优化的性能和灵活的架构,为开发者提供了一种高效、可靠的语言服务方案。通过在本地环境中实现高效的训练与推理功能,DeepSeek不仅提升了整体AI应用的效率,也为复杂任务提供了强大的支持能力。

软件以及工具:ollama、奇游、deepseek模型、Chatbox AI

链接:夸克网盘分享

一、安装ollama

官网(不建议,下载很慢):Ollama

安装包链接(夸克):夸克网盘分享

下载完后双击打开

点击install安装,等待安装完成即可。

安装后要检验一下是否安装成功:按win+R并输入cmd进入命令行,接着输入“ollama”并回车

出现上面的返回信息就说明安装成功了

二、安装奇游加速器(优点:避免deepseek模型下载缓慢)

官网:奇游电竞加速器 新游热游毫秒响应 支持免费试用【官方网站】

安装包链接(夸克):夸克网盘分享

1、双击安装打开,修改一下路径,尽量别装C盘

修改完点击快速安装即可,等待安装完成即可

2、安装完成后打开,登录个人账号,接着在右上角的口令里输入“小奇666”并兑换,接着你的账号就领取了三天会员

3、在右上角的搜索框里输入ollama搜索,点击deepseek进入加速

此时,deepseek的加速已经就绪了,这时候再用ollama下载deepseek模型时就不会下载缓慢了。

三、下载模deepseek模型

按win+R跳出命令行提示框,输入cmd进入命令行,接着就是要选择合适的deepseek模型并下载

1、查看deepseek模型并选择合适自己电脑的deepseek模型

2、一般没有独显的笔记本只需要选择1.5b即可,进入deepseek-r1,选择你要下载的deepseek模型,复制下载链接。一般高配置的电脑一定要选择大一点的模型,因为模型越大,能力越强。

3、win+R,输入cmd进入命令行,接着将复制的下载链接(例子:ollama run deepseek-r1:1.5b)粘贴进去并按回车,可以看到很快就下载完了,提示有success就是该deepseek模型下载成功了

就会出现提示你发送信息(你想问啥都行)

到这里,你已经成功将deepseek部署到本地了。但是,你每次使用deepseek模型时,都需要使用命令行操作,打开deepseek模型命令:“ollama run deepseek-r1:1.5b”,后面那1.5b就是你安装的模型。

命令行界面,对于我们来说,并不美观,也不便捷。所以我们要将本地部署的deepseek部署在Chatbox AI中。

四、下载安装Chatbox AI (使deepseek有UI界面)

官网:Chatbox AI官网:办公学习的AI好助手,全平台AI客户端,官方免费下载

安装包链接:夸克网盘分享

官网下载要四五个小时,别问博主为啥知道,因为博主硬生生等了四五个小时才下好

1、双击安装包,尽量选仅为我安装,如果选第一为所有用户安装的话,环境变量会有点乱。点击下一步

2、尽量将安装路径改为非C盘,我这里选了F盘,点击安装。等待安装完成后打开。

3、打开Chatbox AI后,点击设置——>模型提供方选择“ollama api”——>模型选择你下载的模型——>点击保存

现在你已经完成deepseek+Chatbox AI的本地部署了,可以使用本地部署的deepseek模型了,请尽情问吧

### ChatBox AI 部署指南 #### 准备工作环境 为了成功部署ChatBox AI,需先准备适当的工作环境。这通常涉及选择合适的云服务提供商来托管应用程序。对于希望利用全面管理服务的企业来说,亚马逊网络服务(AWS)是一个理想的选择[^1]。 #### 创建AWS账户并配置安全设置 如果尚未拥有AWS账户,则需要创建一个新账户。完成注册过程之后,应立即关注安全性方面的问题。通过应用如`AWSManagedRulesAmazonIpReputationList` 和 `AWSManagedRulesAnonymousIpList`这样的预设规则组可以增强Web应用程序的安全防护措施,防止来自不良IP地址或匿名代理的潜在威胁。 #### 设置计算资源 根据预期负载情况,在EC2实例上安装必要的软件栈(操作系统、数据库服务器等),或者考虑采用更简便的方式——使用Elastic Beanstalk自动处理基础设施管理和平台层面的任务。 #### 构建与训练模型 针对特定业务场景定制聊天机器人逻辑之前,可能还需要构建机器学习模型来进行自然语言理解(NLU)任务。这部分工作可以在SageMaker平台上完成;它提供了丰富的工具集用于开发高质量AI/ML解决方案。 #### 发布API端点 一旦完成了上述准备工作,就可以把训练好的对话引擎打包成RESTful API的形式对外提供服务了。API Gateway能够帮助快速搭建起稳定可靠的接口层,并支持多种认证机制确保调用者的合法性验证。 #### 测试与优化性能 最后但同样重要的是要进行全面的功能性和压力测试以确认整个系统的健壮性以及响应速度能否满足实际需求。依据反馈不断调整参数直至达到最佳状态为止。 ```python import boto3 def deploy_chatbox_ai(): client = boto3.client('apigateway') response = client.create_rest_api( name='ChatBoxAIAPI', description='An API endpoint for the deployed chatbot' ) api_id = response['id'] print(f"Created new REST API with ID {api_id}") ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值