链接:https://leetcode.cn/problems/numbers-at-most-n-given-digit-set/solutions/1900704/shu-xue-zhu-shi-chao-ji-xiang-xi-by-xun-2nq90/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
题目
示例
思路
根据题意我们对数字进行分类讨论:
- 若数字的位数小于n的位数,那么该数字一定小于n,直接计入答案
- 若数字的位数等于n的位数,我们从数字的首位分情况进行讨论
- 若数字的第i位小于n的第i位,则直接计入答案,count += less * pow(digitsSize, len - 1);其中less为在digits中小于n的第i位的数字个数。
- 若数字的第i位等于n的第i位,则循环对下一位进行计算。
- 若digits中没有和n的第i位相等的数字,计算结束
由于digits的范围是1-9,因此不需要考虑前导0的问题。
- 若数字的第i位小于n的第i位,则直接计入答案,count += less * pow(digitsSize, len - 1);其中less为在digits中小于n的第i位的数字个数。
其中可能有人疑惑我第 1 位取了 7 之后会对后续数取全排列 那我第 2 位取 6(假如存在6) 之后又会对后续数取全排列,那上一次第一次取的时候 不会含盖第 2 次吗?其实是不会的,因为第一次的时候我们取后续的时候都没有取等于的情况
代码
int digit(int n)//统计位数
{
int count = 0;
while(n)
{
count++;
n /= 10;
}
return count;
}
int atMostNGivenDigitSet(char ** digits, int digitsSize, int n){
int len = digit(n);
int count = 0;
int dp[len];
for(int i = 0; i < len-1; i++)//位数小于n的数
{
count += pow(digitsSize, i+1);
}
char ans[len+1];
memset(ans, 0, sizeof(ans));
sprintf(ans, "%d", n);//处理数字,方便后续操作
//小于第一位的全部可能
int lessThanPerDigit = 0;
for(int i = 0; i < digitsSize; ++i)
{
if(digits[i][0] - '0' < ans[0] - '0')
lessThanPerDigit++;
else
break;
}
count += lessThanPerDigit * pow(digitsSize, len - 1);
//处理原数组,方便后续判断
int hash[10] = {0};
for(int i = 0; i < digitsSize; ++i)
{
hash[digits[i][0] - '0'] = 1;
}
//处理数字的位数等于n的位数
//枚举n的每一个数位
for (int i = 0; i < len; i++)
{
//是否存在该数字
if(hash[ans[i] - '0'] == 1)
{
//如果是最后一位相同,之后没有可以选择的数了
//所以+1就可以了,相当于构造了n
if(i == len-1) return count+1;
//重复之前操作,
int lessThanPerDigit = 0;
for(int j = 0; j < digitsSize; ++j)
{
//不用担心i+1会超,因为len-1的时候就退出了;
if(digits[j][0] - '0' < ans[i+1] - '0')
lessThanPerDigit++;
else
break;
}
count += lessThanPerDigit * pow(digitsSize, len - i - 2);
}
//若digits中没有和n的第i位相等的数字,计算结束
else {
//计算完毕 直接退出即可
break;
}
}
return count;
}
作者:小迅
链接:https://leetcode.cn/problems/numbers-at-most-n-given-digit-set/solutions/1900704/shu-xue-zhu-shi-chao-ji-xiang-xi-by-xun-2nq90/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。