实现图的宽度优先遍历

任务描述

本关任务:请你实现 graph.cpp 里的int Graph_WidthFirst(Graph*g, int start, Edge* tree)函数。 注意遵守约定:编号小的优先入队列。

相关知识

图 2 给出了对图 1 的无向图的存储结构图:每个顶点的名称由一个字符串描述,所有字符串的起始地址组织为一个数组,数组的起始地址为vetex;顶点的相邻关系保存在相邻矩阵中,其起始地址为adjadj[i*n+j]的值为 1 表示i号顶点到j号顶点有边,为 0 表示无边,其中n是顶点个数,ij是顶点在顶点表中的编号。 将n,vetex,adj组织成结构:


  1. struct Graph {
  2. int n;//顶点数
  3. char** vetex;
  4. int* adj;
  5. };

给定指向该结构的指针g,就可以对图进行操作。

宽度优先遍历算法(伪代码):

  1. WidthFirst(Graph, start)
  2. //输入Graph是图,start是开始顶点的编号
  3. //输出:tree_edge[i]=<from,to>是遍历树的一条边
  4. //tree_edge[1..n-1]为遍历树的n-1条边
  5. //tree_edge[0].to … tree_edge[n-1].to是遍历序列
  6. QueueIn(<-1,start>)
  7. k=0;
  8. while(QueueNotEmpty) {
  9. <a,b>=QueueOut;
  10. if (unvisited(b)) {
  11. visit(b); // visit b, and set a flag for b.
  12. tree_edge[k++]=<a,b>; // add <a,b> to the tree
  13. for each <b,c> in the Edge Set {
  14. if (unvisited(c)) QueueIn(<b,c>); //约定:编号小的先入队列
  15. }
  16. }
  17. }

对图1运行该算法的结果: 生成树的边是:<-1,A> <A,B> <A,C> <A,F> <B,D> <F,E>; 宽度优先遍历的顶点访问次序是:A B C F D E。

编程要求

请你实现graph.cpp里的int Graph_WidthFirst(Graph*g, int start, Edge* tree)函数。 注意遵守约定:编号小的优先入队列。

  1. //Graph.cpp
  2. ///////////////////////////////////////////////////
  3. #include <stdio.h>
  4. #include <stdlib.h>
  5. #include <string.h>
  6. #include "Graph.h"
  7. //////////////////////////////////////////////////
  8. Graph* Graph_Create(int n)
  9. {
  10. Graph* g=(Graph*)malloc(sizeof(Graph));
  11. g->n=n;
  12. g->vetex=(char**)malloc(sizeof(char*)*n);
  13. int i;
  14. for (i=0; i<n; i++) g->vetex[i] = NULL;
  15. g->adj=(int*)malloc(sizeof(int)*n*n);
  16. int j;
  17. for(i=0; i<n; i++) {
  18. for(j=0; j<n; j++) {
  19. g->adj[i*n+j]=0;
  20. }
  21. }
  22. return g;
  23. }
  24. void Graph_Free(Graph* g)
  25. {
  26. free(g->adj);
  27. int i;
  28. for (i=0; i<g->n; i++) free(g->vetex[i]);
  29. free(g->vetex);
  30. free(g);
  31. }
  32. int Graph_WidthFirst(Graph*g, int start, Edge* tree)
  33. //从start号顶点出发宽度优先遍历,(编号从0开始)
  34. //返回访问到的顶点数,
  35. //tree[]输出遍历树
  36. //返回的tree[0]是(-1, start),
  37. //真正的遍历树保存在tree[1..return-1], return是返回值
  38. //顶点的访问次序依次为tree[0].to, tree[1].to, ..., tree[return-1].to
  39. //输入时,tree[]的长度至少为顶点数
  40. //返回值是从start出发访问到的顶点数
  41. {
  42. const int MAX=1000;
  43. Edge queue[MAX];
  44. int head=0, tail=0;
  45. #define In__(a,b) {queue[tail].from=a; queue[tail].to=b; tail=(tail+1)%MAX;}/////////
  46. #define Out__(a,b) {a=queue[head].from; b=queue[head].to; head=(head+1)%MAX;}//
  47. #define QueueNotEmpty (head!=tail?1:0)///////////////////////////////////
  48. #define HasEdge(i,j) (g->adj[(i)*g->n+(j)]==1)
  49. char* visited=(char*)malloc(sizeof(char)*g->n);
  50. memset(visited, 0, sizeof(char)*g->n);
  51. int parent=-1;
  52. int curr=start;
  53. In__(parent, curr);
  54. int k=0; //已经访问的结点数
  55. //在begin和end之间实现你的代码
  56. /*****Begin*****/
  57. /*****End*****/
  58. free(visited);
  59. return k;
  60. #undef In__//////////////////////////////
  61. #undef Out__///////////////////////////////
  62. #undef QueueNotEmpty////////////////////////
  63. #undef HasEdge
  64. }
测试说明

本关的测试过程如下:

  1. 平台编译 step1/Main.cpp ;
  2. 平台运行该可执行文件,并以标准输入方式提供测试输入;
  3. 平台获取该可执行文件的输出,然后将其与预期输出对比,如果一致则测试通过;否则测试失败。

输入输出格式说明:

输入格式: 输入n,顶点数; 输入n个字符串,即n个顶点的名称,其编号按输入次序是,0,...,n-1; 输入若干数字对(a b)或<a b>(a b)表示无向边,<a b>表示有向边; 输入字符x,表示边输入结束; 输入一个数start,表示开始顶点的编号。

输出格式: 输出生成树的边序列,边的第start个顶点构成的序列应是顶点访问序列。

以下是平台对 step1/Main.cpp 的测试样例: 样例输入

  1. 6
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. ( 0 1 )
  9. ( 0 2 )
  10. ( 0 5 )
  11. ( 1 3 )
  12. ( 1 5 )
  13. ( 2 3 )
  14. ( 4 5 )
  15. x
  16. 0

样例输出

  1. tree edges: <-1,A> <A,B> <A,C> <A,F> <B,D> <F,E>
  2. visit sequence: A B C F D E

//Graph
///////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "Graph.h"
/////////////////////////////////////////////////////////////

Graph* Graph_Create(int n)
{
	Graph* g=(Graph*)malloc(sizeof(Graph));
	g->n=n;
	g->vetex=(char**)malloc(sizeof(char*)*n);
	int i;
	for (i=0; i<n; i++) g->vetex[i] = NULL;
	g->adj=(int*)malloc(sizeof(int)*n*n);
	int j;
	for(i=0; i<n; i++) {
		for(j=0; j<n; j++) {
			g->adj[i*n+j]=0;
		}
	}
	return g;
}

void Graph_Free(Graph* g)
{
	free(g->adj);
	int i;
	for (i=0; i<g->n; i++) free(g->vetex[i]);
	free(g->vetex);
	free(g);
}

int Graph_WidthFirst(Graph*g, int start, Edge* tree)
//从start号顶点出发宽度优先遍历,(编号从0开始)
//返回访问到的顶点数,
//tree[]输出遍历树
//返回的tree[0]是(-1, start), 
//真正的遍历树保存在tree[1..return-1], return是返回值
//顶点的访问次序依次为tree[0].to, tree[1].to,  ..., tree[return-1].to
//输入时,tree[]的长度至少为顶点数
//返回值是从start出发访问到的顶点数
{
	const int MAX=1000;
	Edge queue[MAX];
	int head=0, tail=0;
#define In__(a,b)  {queue[tail].from=a; queue[tail].to=b; tail=(tail+1)%MAX;}/////////
#define Out__(a,b)  {a=queue[head].from; b=queue[head].to; head=(head+1)%MAX;}//
#define QueueNotEmpty (head!=tail?1:0)///////////////////////////////////
#define HasEdge(i,j)  (g->adj[(i)*g->n+(j)]==1)

	char* visited=(char*)malloc(sizeof(char)*g->n);
	memset(visited, 0, sizeof(char)*g->n);

	int parent=-1;  
	int curr=start;
	In__(parent, curr); 
	int k=0; //已经访问的结点数
	/*请在BEGIN和END之间实现你的代码*/
    /*****BEGIN*****/
    while(QueueNotEmpty){
        Out__(parent,curr);
        if((HasEdge(parent,curr)||parent==-1)&&visited[curr]!=1){
            visited[curr]=1;
            tree[k].from=parent;
            tree[k].to=curr;
            k++;
            for(int i=0;i<g->n;i++)
            {
                if(HasEdge(curr,i)&&visited[i]!=1)
            {
                In__(curr,i)
            }
            }
        }
    }
    
    /*****END*******/
	return k;
#undef In__//////////////////////////////
#undef Out__///////////////////////////////
#undef QueueNotEmpty////////////////////////
#undef HasEdge
}

<think>嗯,用户现在在问关于在头歌平台上实现宽度优先遍历(BFS)的代码示例。我需要先理解他们的需求。头歌平台可能是一个在线编程或算法学习平台,用户可能需要在上面完成相关的编程题目,比如实现BFS遍历结构。 首先,我得回顾一下BFS的基本原理。BFS通常使用队列来管理待访问的节点,从起始节点开始,逐层访问邻居节点。对于的表示,常见的有邻接矩阵和邻接表两种方式。用户可能需要这两种实现的示例代码,或者其中一种。 然后,我需要检查提供的引用内容。引用[4]和[5]分别提到了邻接矩阵和邻接链表的BFS实现,并且是用C语言写的。用户可能需要类似的代码,但不确定他们使用的编程语言。不过头歌平台可能支持多种语言,比如C++、Python等。可能需要给出不同语言的示例,或者确认用户需要的语言。不过用户没有明确说明,所以可能需要提供常见的语言,比如Python或C++的示例。 另外,引用[2]和[3]提到BFS在解决岛屿数量问题中的应用,以及生成BFS树,这些可能作为应用场景的例子,但用户主要需要的是代码实现。 接下来,我需要确保回答的结构符合用户的要求:结构清晰,分步解决问题,代码示例正确,并且生成相关问题。同时,要使用中文,并正确应用引用标注。 可能的步骤是: 1. 解释BFS的基本原理和步骤,引用相关引用内容。 2. 提供邻接矩阵和邻接表的代码示例,用不同的编程语言,如Python或C++。 3. 根据头歌平台的可能要求,说明代码实现的注意事项,比如输入输出的格式。 4. 生成相关问题,比如BFS的应用、性能分析、优化方法等。 需要确认用户提供的引用中的代码是否可以直接参考。例如,引用[4]是C语言的邻接矩阵实现,引用[5]是邻接链表的C代码。如果用户需要Python示例,可能需要转换这些代码。 另外,用户可能希望代码示例能够直接用在头歌平台的题目中,所以需要注意变量命名、输入处理等是否符合平台的要求。例如,的顶点可能用字符或数字表示,需要处理不同的输入格式。 还需要考虑遍历是否需要标记已访问节点,避免重复访问,这在代码中需要体现,比如使用一个visited数组或集合。 总结回答的结构: - BFS算法概述:队列的使用,访问顺序,引用相关引用。 - 邻接矩阵的代码示例(Python和C++)。 - 邻接链表的代码示例(Python和C++)。 - 输入输出示例和注意事项。 - 相关问题。 在编写代码时,要确保语法正确,符合用户提到的系统级指令中的LaTeX格式要求,比如行内公式用$...$,独立公式用$$...$$,但代码部分应该用代码块包裹。 可能还需要解释代码的关键部分,比如队列的操作,如何遍历邻居节点等,帮助用户理解实现细节。 最后,生成的相关问题需要与BFS的实现、应用、优化等相关,比如时间复杂度分析,如何优化BFS的空间复杂度,BFS与DFS的区别等。</think>### 宽度优先遍历(BFS)实现方法 宽度优先遍历(BFS)是一种逐层访问节点的算法,常用于最短路径查找或连通性分析。以下是基于邻接矩阵和邻接表的代码示例,适用于头歌平台等编程环境。 --- #### **1. BFS算法核心步骤** 1. **初始化队列**:将起始节点加入队列并标记为已访问[^4][^5]。 2. **循环处理队列**:取出队首节点,访问其未被访问的邻居节点,加入队列并标记。 3. **重复直至队列为空**:所有可达节点均被访问。 --- #### **2. 代码实现示例** ##### **邻接矩阵实现(Python)** ```python from collections import deque def bfs_matrix(graph, start): n = len(graph) visited = [False] * n queue = deque([start]) visited[start] = True result = [] while queue: node = queue.popleft() result.append(node) for neighbor in range(n): if graph[node][neighbor] == 1 and not visited[neighbor]: visited[neighbor] = True queue.append(neighbor) return result # 示例输入:邻接矩阵(0表示无连接,1表示有连接) graph = [ [0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0] ] print(bfs_matrix(graph, 0)) # 输出: [0, 1, 2, 3] ``` ##### **邻接表实现(C++)** ```cpp #include <iostream> #include <queue> #include <vector> using namespace std; vector<int> bfs_adjlist(vector<vector<int>>& graph, int start) { vector<bool> visited(graph.size(), false); queue<int> q; vector<int> result; q.push(start); visited[start] = true; while (!q.empty()) { int node = q.front(); q.pop(); result.push_back(node); for (int neighbor : graph[node]) { if (!visited[neighbor]) { visited[neighbor] = true; q.push(neighbor); } } } return result; } // 示例输入:邻接表 int main() { vector<vector<int>> graph = {{1, 2}, {0, 3}, {0, 3}, {1, 2}}; vector<int> traversal = bfs_adjlist(graph, 0); for (int node : traversal) cout << node << " "; // 输出: 0 1 2 3 return 0; } ``` --- #### **3. 输入输出说明** - **邻接矩阵**:二维数组表示节点间的连接关系,适合稠密[^4]。 - **邻接表**:链表或动态数组存储每个节点的邻居,适合稀疏[^5]。 - **头歌平台注意事项**:需根据题目要求调整输入格式(如节点用字符或数字表示)。 --- #### **4. 应用示例** - **岛屿数量问题**:通过BFS标记连通区域,统计独立岛屿数量[^2]。 - **最短路径问题**:在无权中利用BFS生成最短路径树[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式Dora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值