Opencv图片的旋转和图片的模板匹配

图片的旋转和图片的模板匹配

目录

  • 图片的旋转和图片的模板匹配
    • 1 图片的旋转
      • 1.1 numpy旋转
        • 1.1.1 函数
        • 1.1.2 测试
      • 1.2 opencv旋转
        • 1.2.1 函数
        • 1.2.2 测试
    • 2 图片的模板匹配
      • 2.1 函数
      • 2.2 实际测试

1 图片的旋转


1.1 numpy旋转

1.1.1 函数
  • np.rot90(kl,k=1),k=1逆时针旋转90度,kl为图片
  • np.rot90(kl,k=-1),k=-1顺时针旋转90度,kl为图片
1.1.2 测试

图片
在这里插入图片描述

代码展示:

import numpy as np
kl = cv2.imread('kl.jpg')
kl_rot901 = np.rot90(kl,k=1)
kl_rot90_1 =np.rot90(kl,k=-1)
cv2.imshow('kl',kl)
cv2.waitKey(0)
cv2.imshow('kl_rot901',kl_rot901)
cv2.waitKey(0)
cv2.imshow('kl_rot90_1',kl_rot90_1)
cv2.waitKey(0)

运行结果:
在这里插入图片描述

1.2 opencv旋转

1.2.1 函数
  • cv2.rotate(kl,cv2.ROTATE_90_CLOCKWISE),顺时针90度
  • cv2.rotate(kl,cv2.ROTATE_90_COUNTERCLOCKWISE),逆时针90度
  • cv2.rotate(kl,cv2.ROTATE_180),180度
1.2.2 测试

代码展示:

import cv2
kl = cv2.imread('kl.jpg')
kl_ROTATE_90_CLOCKWISE = cv2.rotate(kl,cv2.ROTATE_90_CLOCKWISE)
kl_ROTATE_180 = cv2.rotate(kl,cv2.ROTATE_180)
kl_ROTATE_90_COUNTERCLOCKWISE = cv2.rotate(kl,cv2.ROTATE_90_COUNTERCLOCKWISE)
cv2.imshow('kl',kl)
cv2.waitKey(0)
cv2.imshow('kl_ROTATE_90_COUNTERCLOCKWISE',kl_ROTATE_90_COUNTERCLOCKWISE)
cv2.waitKey(0)
cv2.imshow('kl_ROTATE_90_CLOCKWISE',kl_ROTATE_90_CLOCKWISE)
cv2.waitKey(0)
cv2.imshow('kl_ROTATE_180',kl_ROTATE_180)
cv2.waitKey(0)

运行结果:
在这里插入图片描述

2 图片的模板匹配

2.1 函数

  • re=cv2.matchTemplate(kl,bt,cv2.TM_CCOEFF),进行匹配
  • min_val,max_val,min_loc,max_loc = cv2.minMaxLoc(re),匹配得分和坐标
    • min_val最小得分,max_val,最大得分
    • min_loc,最小得分坐标,max_loc,最大得分坐标(x,y)=(max_loc[0],max_loc[1])

2.2 实际测试

图片
在这里插入图片描述

在这里插入图片描述

代码展示:

import cv2
bt = cv2.imread('bt.png')
kl = cv2.imread('kl.png')
h,w = bt.shape[:2]
re = cv2.matchTemplate(kl,bt,cv2.TM_CCOEFF)
min_val,max_val,min_loc,max_loc = cv2.minMaxLoc(re)
tp_left = max_loc
bt_right = (tp_left[0]+w, tp_left[1]+h)
kl_copy = kl.copy()
kl_bt = cv2.rectangle(kl_copy,tp_left,bt_right,(255,0,0),2)
cv2.imshow('bt',bt)
cv2.waitKey(0)
cv2.imshow('kl',kl)
cv2.waitKey(0)
cv2.imshow('kl_bt',kl_bt)
cv2.waitKey(0)

运行结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值