1.AP
AP:Average Precison,所有预测图片内某一类别PR曲线(横轴为Recall,纵轴为Precision)下的面积。
2.mAP
mAP:mean Average Precision, 各类别【AP】的平均值。
3.TP
True Positive(TP):预测框与真实框的IOU>IOU阈值,IOU阈值一般设置为0.5,0.75,0.95等。在目标检测的评估指标规定下,一个真实框(groud truth box)只有一个 TP框,其它均为FP框(即使IOU大于阈值)。
4.FP
False Positive(FP):存在两种情况,(a)预测框与真实框的IOU<IOU阈值;(b)多余的预测框(iou值并不是最大的),即使 i o u iouiou 大于阈值,但是真实框已经存在匹配的预测框。
5.FN
False Negative(FN):没有匹配到预测框的 GT数量,也即是真实框没有任何预测框与之重叠,目标检测中也称为漏检。
6.TN
True Negative(TN):没有负样本,图像应该至少包含一个目标;mAP 指标不需要该值;
注意:目标检测中,TN 表示将背景正确检测为背景,等价于没有检测任何目标,通常不需要该指标。
7.Precision
所有预测结果中,正确预测框所占的比例。
简言之,所有的预测结果中,存在两种情况:(a)正确的预测结果(TP);(b)错误的预测结果(FP);
Precision = TP / (TP + FP) = TP / AllDetections
8.Recall
真实目标被正确预测所占的比例。
Recall = TP/(TP+FN),其中,all_ground_truths = TP + FN; 简言之,所有的真实框,有多少被检测出来(TP);