神经网络模型训练套路(一)

1. 准备数据集dataset,及数据加载dataloader

我用的是CIFAR-10彩色图像数据集,CIFAR-10 是一个用于识别普适物体的小型数据集。一共包含10 个类别的RGB 彩色图片:飞机( airplane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck )。CIFAR-10数据集中每个图片的尺寸为32 × 32 ,每个类别有6000个图像,数据集中一共有50000 张训练图片和10000 张测试图片。

2.搭建网络模型

                                                             CIFAR 10 model结构

3.创建损失函数、优化器

4.设置训练参数(epoch...)

5.网络进入训练状态(调用model.train())

(1)从train_dataloader中加载数据   

(2) 计算损失函数        

(3) 反向传播,优化器优化        

(4) print, tensorboard 展示输出

6. 每个epoch训练完成后,网络进入测试状态

(1) 在with torch.no_grad下进行(只测试,无梯度优化)  

(2) 从test_dataloader中加载数据  

(3) 计算指标(loss,acc),展示模型效果

7. 保存模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值