数据的聚合和运算

这篇博客介绍了如何使用Pandas库进行数据的聚合和运算,包括groupby功能的使用,如分组统计、计算透视表、执行分位数分析等。还详细讲解了pivot_table函数的应用,以及aggfunc参数和margins选项。此外,文章探讨了数据的拆分、应用和合并步骤,并提到了apply方法和聚合概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对所有数据进行分组然后对每一个组应用一个函数之进行分组统计或者生成透视pd有一个groupby功能 这是上述内容的核心 可以切片、切块、摘要

pd可以进行:

机算分组摘要统计 如计数、平均值、标准差、自定义函数

计算分组概述统计 如数量、平均值、标准差、自定义函数(这俩有啥区别。。)

应用组内转换或其它运算 如规格化、线性回归、排名、选取子集

计算透视表或交叉表

执行分位数分析以及其他统计分组分析

透视表叫 pivot table

df有一个pivot_table

pandas也可以添加顶级的pivot_table函数

margins是为分项进行小计

df.pivot_table(index=['d1','d2'])

就出现了这个透视表

然后左边的index是d1 d2  然后其他项都在column

df.pivot_table(['d1','d2'],index='k1',columns='k2')

最上边的column是d1d2 然后下一级是k2

k1是在左边

里边有两个参数

一个是margins 前边有提过

margins=True 就是求和 默认是不求的

aggfunc=len是可以得到有关分组大小的交叉表

对事件序列数据的聚合 叫做重采样 (chong)

guoupby机制

在一个指定的轴上进行三步:拆分、应用、合并

特别的,拆分 是沿着一个轴把同样的放在一起 这就进行了分组

分组除了根据上边这个名字,还可以根据长度

如果是字典或是Series 可以按照待分组轴上的值 和分组名的对应关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值