第一步、分析页面
F12打开分析页面源码,废话不多说
第二部、写代码
# -*- codeing = utf-8 -*-
# @Time : 2023/5/31 18:39
# @Author : 乙太
# @File : 中国最低气温排行榜.py
# @Software : PyCharm
import requests
from bs4 import BeautifulSoup
from pyecharts.charts import Bar
from pyecharts import options as opts
import os
ALL_DATA = []
class TianQi:
def __init__(self):
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.57',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'Cookie': 'HttpOnly; HttpOnly; userNewsPort0=1; defaultCty=101030100; f_city=%E5%A4%A9%E6%B4%A5%7C101030100%7C; defaultCtyName=%u5929%u6D25; zs=101030100%7C%7C%7Cyd-uv'
}
def parse_page(self, url):
response = requests.get(url, headers=self.headers)
text = response.content.decode('utf-8')
soup = BeautifulSoup(text, 'html5lib')
conMidtab = soup.find('div', class_='conMidtab')
conMidtab2s = conMidtab.find_all('div', class_='conMidtab2')
if url == 'http://www.weather.com.cn/textFC/gat.shtml':
conMidtab2s = soup.find('div', class_='conMidtab2')
tbodys = conMidtab2s.find_all('tbody')
conMidtab2s = tbodys
for conMidtab2 in conMidtab2s:
trs = conMidtab2.find_all('tr')[2:]
for index, tr in enumerate(trs):
tds = tr.find_all('td')
city_td = tds[0]
if index == 0:
city_td = tds[1]
city = list(city_td.stripped_strings)[0]
temp_td = tds[-2]
min_temp = list(temp_td.stripped_strings)[0]
ALL_DATA.append({"city": city, "min_temp": int(min_temp)})
# print({"city": city, "min_temp": int(min_temp)})
def main(self):
self.urls = [
'http://www.weather.com.cn/textFC/hb.shtml',
'http://www.weather.com.cn/textFC/db.shtml',
'http://www.weather.com.cn/textFC/hd.shtml',
'http://www.weather.com.cn/textFC/hz.shtml',
'http://www.weather.com.cn/textFC/hn.shtml',
'http://www.weather.com.cn/textFC/xb.shtml',
'http://www.weather.com.cn/textFC/xn.shtml',
'http://www.weather.com.cn/textFC/gat.shtml'
]
for url in self.urls:
self.parse_page(url)
print(url, '+' * 40)
# 分析数据
# 根据最低气温进行排序
ALL_DATA.sort(key=lambda data: data['min_temp']) # lambda匿名函数,非常重要;然后从低到高排序
data = ALL_DATA[0:10]
print(data)
# 数据可视化pyecharts
bar = Bar()
bar.set_global_opts(title_opts=opts.TitleOpts(title="中国最低气温排行榜"))
'''
for city_temp in data:
city = city_temp['city']
cities.append(city)
'''
cites = list(map(lambda x: x['city'], data))
temps = list(map(lambda x: x['min_temp'], data))
bar.add_xaxis(cites)
bar.add_yaxis("城市",temps)
bar.render('temperature.html')
os.system('temperature.html')
if __name__ == '__main__':
TQ = TianQi()
TQ.main()
最后:实现效果