模拟二分查找路径
网络世界中时常会遇到这类滑稽的算命小程序,实现原理很简单,随便设计几个问题,根据玩家对每个问题的回答选择一条判断树中的路径(如下图所示),结论就是路径终点对应的那个结点。
现在我们把结论从左到右顺序编号,编号从 1 开始。这里假设回答都是简单的“是”或“否”,又假设回答“是”对应向左的路径,回答“否”对应向右的路径。给定玩家的一系列回答,请你返回其得到的结论的编号。
输入格式:
输入第一行给出两个正整数:N(≤30)为玩家做一次测试要回答的问题数量;M(≤100)为玩家人数。
随后 M 行,每行顺次给出玩家的 N 个回答。这里用 y
代表“是”,用 n
代表“否”。
输出格式:
对每个玩家,在一行中输出其对应的结论的编号。
新手上路~~
有错误的地方欢迎指出,谢谢*^____^*
解题思路:以图为例,假设树叶的权值相等,从上到下观察到每层树的分支点的权值是8、4、2。规律就是第一层是2的n-0次方,第二层就是2的n-1次方.......首先定义两个左右范围,根据输入确定二分树的左右走向,即y则左、n则右。我们可以通过一个循环不断的调整左右范围来确定最终的树枝(结论)
下面是ac代码
#include<iostream>
#include<string>
using namespace std;
int pow(int n)
{
int mul=1;
for(int i=0;i<n;i++)
mul*=2;
return mul;
}
int main()
{
int n,m;
cin>>n>>m;
getchar();//消掉换行符
for(int i=0;i<m;i++)
{
string s;
getline(cin,s);
int left=1,right=pow(n);//确定左右范围
//cout<<s<<endl;
for(int j=0;j<n;j++)
{
//cout<<"left = "<<left<<" right = "<<right<<endl;
if(j==n-1)//判断是否为最后一步
{
if(s[j]=='y')//最后一步判断,y输出左值、n输出右值
cout<<left<<endl;
else
cout<<right<<endl;
}
else//不为最后一步
{
if(s[j]=='y')//y则调整左值范围
{
right-=pow(n-1-j);//pow(n-1-j)为下一层分支点所带的权值
}
else//n则调整右值范围
{
left+=pow(n-1-j);
}
}
}
}
return 0;
}