方法同样适用于Vaihingen数据集的处理
在踩过这个坑之后,在这里分享出来,希望大家避免掉进坑了。
首先mmseg官方文档中提供了potsdam数据集的一个准备指示。
提供了数据集的下载连接,当我们点击Google Drive之后,会出现以下的五个压缩包
这里注意,按照mmseg的文档,我们只需要下载 ‘2_Ortho_RGB.zip’ 和 ‘5_Labels_all_noBoundary.zip’。随后按照mmseg官方提供的命令运行即可。
下载另外三个可以,但是不要把这五个压缩包放在一起!实际上这三个压缩包也没有用到,所以最好不要下载。
原因:
到这里你可能会认为,每个压缩包的名字都不一样,即使下载了多余的压缩包数据,应该也不会出现错误吧。
下面我们打开potsdam的数据转换文件看一看。
打开数据处理的python文件,这里可以发现,这个转换的文件里面会把你指定目录下的所有zip压缩包都进行处理并把图像和标签添加到数据集中。
如果你下载了另外三个,你会发现:我模型训练时的miou怎么会这么低呢?
这个操作会导致后面一系列的问题,可能你会认为是学习率的问题、又或者是哪里出现了bug等等等。