Potsdam,Vaihingen数据集(附百度网盘下载地址)

1. Potsdam,Vaihingen数据集下载地址(百度网盘)

对于做遥感图像处理的同学来说,Potsdam,Vaihingen是两个常用的数据集。如果想下载,一般需要搭梯子下载,并且下载过程经常中断,百度相关文章,排名靠前的文章也没有给出国内相关下载链接,因此将自己下载的数据集分享出来,为大家提供方便。

  • Potsdam数据集:
  • 链接:https://pan.baidu.com/s/13rdBXUN_ZdelWNlQZ3Y1TQ?pwd=6c3y
    提取码:6c3y
    在这里插入图片描述
  • Vaihingen数据集
    链接:https://pan.baidu.com/s/1EShNi22VfuIu3e6VygMb8g?pwd=3gsr
    提取码:3gsr
    在这里插入图片描述

2. 数据集分割处理

1)分割图片

以Potsdam数据集为例,其中包含38张6000x6000尺寸的遥感图片,对于一般的训练机器来说,其尺寸有点大,因此需要对原始图片进行分割。这里我将每张原始图片分割为100张600x600的小尺寸图片,程序如下:

#Python程序
import cv2
import numpy

for k in range(7,14):
    img1 = cv2.imread('/user-data/GNN_RemoteSensor/2_Ortho_RGB/top_potsdam_7_' + str(k) + '_RGB.tif') #读取RGB原图像
    img2 = cv2.imread('/user-data/GNN_RemoteSensor/5_Labels_all/top_potsdam_7_' + str(k) + '_label.tif') #读取Labels图像
	# 因为数据集中图片命名不规律,所以需要一批一批的分割
	# cv2.imread函数会把图片读取为(B,G,R)顺序,一定要注意!!!
	# cv2.imwrite函数最后会将通道调整回来,所以成对使用cv2.imread与cv2.imwrite不会改变通道顺序
    #因为6000/10 = 600,所以6000x6000的图像可以划分为10x10个600x600大小的图像
    for i in range(10):
        for j in range(10):
            img1_ = img1[600*i : 600*(i+1), 600*j : 600*(j+1), : 
### Potsdam 数据集的获取 对于希望使用Potsdam数据集的研究者而言,可以通过百度网盘下载数据集,对应的提取码为lala[^1]。 ### Potsdam 数据集简介 Potsdam 数据集是一个具有2D语义分割内容标注的城市遥感数据集。此数据集由KeyValue卫星拍摄而成,尽管具体的卫星型号未公开。数据集中每张图像的分辨率为5厘米,共包含38幅大小为6000×6000像素的影像片段。这些图像是以8位色彩深度存储,并且拥有三个颜色通道(红、绿、蓝)。标签图像同样采用8位色彩深度和三通道格式保存。更多详情可访问官方网址:[ISPRS官网](https://www.isprs.org/education/benchmarks/UrbanSemLab/Default.aspx)[^2]。 ### Potsdam 数据集预处理方法 #### 图像裁剪与缩放 为了适应不同模型输入需求以及减少计算量,在实际应用前通常会对原始高分辨率的大尺寸图片进行适当裁剪或缩小操作。例如可以将大图切割成多个较小子图用于训练过程中的批量加载;也可以直接调整整张图片的比例至目标网络所需的固定尺度。 ```python from PIL import Image import os def resize_image(image_path, output_folder, size=(512, 512)): """Resize an image to the given size.""" with Image.open(image_path) as img: resized_img = img.resize(size) base_name = os.path.basename(image_path) save_path = os.path.join(output_folder, f'resized_{base_name}') resized_img.save(save_path) # Example usage of resizing function resize_image('path_to_original_image', 'output_directory') ``` #### 类别重映射 由于原版标签文件可能并不完全匹配所选用的具体分类体系,因此有必要根据实际情况重新定义各类别的ID编号及其对应的颜色编码。这一步骤可通过编写简单的脚本来实现自动化转换。 ```python import numpy as np import cv2 label_mapping = { (255, 255, 255): 0, # Impervious surfaces -> ID=0 (0, 0, 255): 1, # Building -> ID=1 (0, 255, 255): 2, # Low vegetation -> ID=2 (0, 255, 0): 3, # Tree -> ID=3 (255, 255, 0): 4, # Car -> ID=4 (255, 0, 0): 5 # Clutter/background-> ID=5 } def remap_labels(label_file, output_file): label_data = cv2.imread(label_file) result = np.zeros((label_data.shape[:2]), dtype=np.uint8) for rgb_value, new_id in label_mapping.items(): mask = np.all(label_data == list(rgb_value), axis=-1) result[mask] = new_id cv2.imwrite(output_file, result) remap_labels('input_label.png', 'mapped_output.png') ```
评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值