Llama为何要采用RoPE旋转位置编码?

最近在做 LLM 窗口外推的相关工作,因此刚好也回顾一下目前最流行的位置编码 RoPE。

图片

01

关于RoPE

RoPE(Rotary Position Embedding),是苏剑林大神在 2021 年就提出的一种 Transformer 模型的位置编码。

RoPE 是一种可以以绝对位置编码形式实现的相对位置编码,兼顾了模型性能和效率。

2023 年上半年的时候,大模型位置编码尚有 Alibi 和 RoPE 在相互比拼,而到了 2023 年下半年,及今 2024 年,新开源出来的模型,大部分都是使用 RoPE 了。当然 Alibi 也有其优势,这个在讲 Alibi 的时候来说。

苏神在他的个人网站科学空间中对 RoPE 有相关文章进行了介绍,本篇是在这个基础上,对 RoPE 进行理解(公式和符号上也会沿用苏神的写法)。

02

以绝对位置编码的方式实现相对位置编码

前面提到,RoPE 是一种一绝对位置编码的方式实现的相对位置编码,那么这么做能带来什么收益?

先说原因:

在文本长度不长的情况下(比如 Bert 时代基本都是 256/512 token 的长度),相对位置编码和绝对位置编码在使用效果上可以说没有显著差别。

如果要处理更大长度的输入输出,使用绝对位置编码就需要把训练数据也加长到推理所需长度,否则对于没训练过的长度(训练时没见过的位置编码),效果多少会打些折扣。

而使用相对位置编码则更容易外推,毕竟 token-2 和 token-1 的距离,与 token-10002 和 token-10001 的距离是一样的,也因此可以缓解对巨量长文本数据的需求。

但是传统相对位置编码的实现相对复杂,有些也会有计算效率低的问题。由于修改了 self-attention 的计算方式,也比较难推广到线性注意力计算法模型中。

总结来说,就是绝对位置编码好实现,效率高,适用线性注意力,而相对位置编码易外推,因此就有了对“绝对位置编码的方式实现相对位置编码”的追求,去把二者的优点结合起来。

下面简单回顾一下绝对位置编码和相对位置编码。(对位置编码比较熟悉的朋友可以直接跳到第3节。)

(1)绝对位置编码

先回顾一下带绝对位置编码的 self-attention。

图片

图片

(2)相对位置编码

图片

直观来说,比如词表大小是 1 万,模型训练窗口最大长度是 512,那么对于模型来说,实际上要区分的输入是 1 万×512=512 万个。

看起来虽然不少,但是在海量的数据和训练量下,这也不算什么事儿,模型确实能 handle。

图片

*Google 式*

图片

为什么要增加一个 clip 操作?因为直观上,一个词对其左右附近的其他词的位置关系理应更加敏感。

比如“我请你吃饭”中,“吃饭”这个词需要以高分辨率明确区分出前面三个词“我”、“请”、“你”的位置,以免理解成了“你请我吃饭”。

而随着距离越来越远,这种高分辨率的需求也就越来越低,十万个 token 之前的内容顺序对于当前 token 来说,影响比较小了,在位置向量上可以一视同仁。

另外这也是方便了位置信息的外推,比如我们可以只训练 256 个相对位置编码信息,而在应用是可以外推到>256 的长度。

本来到这里就可以了,相对位置信息已经加入了,但是 Google 除了在 input 端增加了相对位置信息,在输出端也增加了相对位置信息。

本来输出端的计算是:

图片

*XLNET 式*

XLNET 也使用了相对位置编码,思路类似 Google,只是具体的操作不同。

在公式(2)的基础上继续展开:

图片

把绝对位置相关的几个参数改成相对位置相关的参数,变成:

图片

此外,XLNET 只对输入端做了处理,输出端则直接把位置相关的计算去掉了,即:

图片

图片

当然,也有简单一点的实现,比如 T5 的方法。

*T5 式*

图片

(从最早提出,到 XLNET,以及 DeBerta,T5 等,可以看到相对位置编码的实现有一个简化的趋势,而效果也越来越好,正所谓大道至简,有时候有用的东西未必需要很复杂)

(3)对比

看来相对位置编码确实比较复杂,说个大概需要这么多篇幅;并且相对绝对位置编码,也没有那么直接明了,需要对 attention 计算做一些改造。

公式(1)的绝对位置编码中,可以看到在进 softmax 操作前需要做 3 次矩阵加法,3 次矩阵乘法。

从公式(8)可以看到,共有 4 组矩阵计算要做,每组要做 3 次矩阵乘法,相对会比较复杂。

公式(3)也有类似的情况。当然同时也有一些针对相对位置编码的高效计算被提出,这些就需要针对不同的计算方案来优化了。

总之在实现方式上和计算效率上,绝对位置编码具有一些优势。而在输入输出窗口外推方面,相对位置编码有着天然的优势。

另外,绝对位置编码保持 self-attention 的经典形式,使得应用面更广,如可以使用到 linear attention 方案中去,这个以后再展开讲(又挖了个坑)。

03

RoPE的设计思路

(1)保持 attention 计算形式

回顾完经典的绝对位置编码和相对位置编码,回到 RoPE 上来。

先说设计思路:

首先我们想要保持经典 self-attention 的计算方式,即公式(1)中的形式,输入端 = 内积 + softmax,至于输出端则保持完全不变。softmax 我们不去动,那这里留给我们操作的就是内积。

也就说,现在问题是,我们怎么在只做内积的情况下,把内积结果变成只和相对位置有关,而和绝对位置无关的结果。

写成公式就是:

图片

当然理论上这里是存在无数多组答案的,那么 RoPE 怎么找到一组好实现的组合呢?

(2)借用复数寻找组合

图片

这里先回顾一下复数的知识。任意复数都可以表示成复平面的一个 2 维向量。

图片

现在考虑 query 和 key 向量都是 2 维的情况,那么可以代入复数的操作。

(先把 hidden size = 2 的情况推理清楚,后续再推广到更高维的情况)

那么在 2 维复数平面上有什么操作可以满足公式(11)的要求呢?Roformer 论文中提出的是这组:

图片

先证明一下这个组合的正确性,是不是真的满足公式(11)。(也可以先跳过证明,选择先相信这个组合)

回顾一下欧拉公式:

图片

(这里沿用式(1)中,默认向量为行向量的设定,所有有个 transpose,实际上是行向量还是列向量都没关系,只是推算的时候写法问题)

类似地,有:

图片

用了三角函数和差公式:

图片

(3)“旋转”位置编码

发现式(17)可以写成这样:

图片

如果从向量视角来看,则有:

图片

看式(22)和(23),可以看到等号右边都有:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这也是为什么叫做“旋转”位置编码。

(4)从 2 维推广到高维

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

答案是把高维输入拆分成两个两个一组(这要求输入是偶数维,目前的模型也都是偶数维,所以没问题),则高维的“旋转”矩阵有多个小旋转矩阵组成。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(5)高效率实现

式(25)中的矩阵在高维的情况下很稀疏,直接使用这么个矩阵来计算效率并不高,可以使用一个这样的高效率实现方式。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

只需进行两组 element-wise 乘法即可。形式上看起来是类似乘性绝对位置编码的做法。

另外,看 LLAMA 中的实现,可以看到旋转位置编码是在每一个 decoder 层的输入都加了的。每次都强化一次位置信息,也有助于模型更好识别不同距离的内容。

(6)远程衰减的特性

至此,旋转位置编码已经完备,具备了计算高效,实现容易,便于外推,适用于线性注意力的特性。实际上它还具备另一项优点:有远程衰减的特性

直观看起来远程衰减很符合直觉,毕竟注意力机制随着距离的衰减而降低,这个机制和人类也很像。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

小结

总之,RoPE 在设计和实现上还是挺巧妙的,性质上也很有很多优势,所以被广泛应用到 transformer 模型中去了。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
在这里插入图片描述

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值