Llama为何要采用RoPE旋转位置编码?

最近在做 LLM 窗口外推的相关工作,因此刚好也回顾一下目前最流行的位置编码 RoPE。

图片

01

关于RoPE

RoPE(Rotary Position Embedding),是苏剑林大神在 2021 年就提出的一种 Transformer 模型的位置编码。

RoPE 是一种可以以绝对位置编码形式实现的相对位置编码,兼顾了模型性能和效率。

2023 年上半年的时候,大模型位置编码尚有 Alibi 和 RoPE 在相互比拼,而到了 2023 年下半年,及今 2024 年,新开源出来的模型,大部分都是使用 RoPE 了。当然 Alibi 也有其优势,这个在讲 Alibi 的时候来说。

苏神在他的个人网站科学空间中对 RoPE 有相关文章进行了介绍,本篇是在这个基础上,对 RoPE 进行理解(公式和符号上也会沿用苏神的写法)。

02

以绝对位置编码的方式实现相对位置编码

前面提到,RoPE 是一种一绝对位置编码的方式实现的相对位置编码,那么这么做能带来什么收益?

先说原因:

在文本长度不长的情况下(比如 Bert 时代基本都是 256/512 token 的长度),相对位置编码和绝对位置编码在使用效果上可以说没有显著差别。

如果要处理更大长度的输入输出,使用绝对位置编码就需要把训练数据也加长到推理所需长度,否则对于没训练过的长度(训练时没见过的位置编码),效果多少会打些折扣。

而使用相对位置编码则更容易外推,毕竟 token-2 和 token-1 的距离,与 token-10002 和 token-10001 的距离是一样的,也因此可以缓解对巨量长文本数据的需求。

但是传统相对位置编码的实现相对复杂,有些也会有计算效率低的问题。由于修改了 self-attention 的计算方式,也比较难推广到线性注意力计算法模型中。

总结来说,就是绝对位置编码好实现,效率高,适用线性注意力,而相对位置编码易外推,因此就有了对“绝对位置编码的方式实现相对位置编码”的追求,去把二者的优点结合起来。

下面简单回顾一下绝对位置编码和相对位置编码。(对位置编码比较熟悉的朋友可以直接跳到第3节。)

(1)绝对位置编码

先回顾一下带绝对位置编码的 self-attention。

图片

图片

(2)相对位置编码

图片

直观来说,比如词表大小是 1 万,模型训练窗口最大长度是 512,那么对于模型来说,实际上要区分的输入是 1 万×512=512 万个。

看起来虽然不少,但是在海量的数据和训练量下,这也不算什么事儿,模型确实能 handle。

图片

*Google 式*

图片

为什么要增加一个 clip 操作?因为直观上,一个词对其左右附近的其他词的位置关系理应更加敏感。

比如“我请你吃饭”中,“吃饭”这个词需要以高分辨率明确

<think>嗯,用户让我介绍一下旋转位置编码的实现。首先,我得回忆一下旋转位置编码RoPE)的相关知识。RoPE是在自然语言处理中用于给Transformer模型添加位置信息的一种方法,特别是在一些现代模型如LLaMA和GPT-Neo中应用。用户可能已经了解过传统的位置编码,比如绝对位置编码和相对位置编码,但RoPE的不同之处在于它通过旋转矩阵将位置信息融入到注意力机制中。 首先,我需要明确旋转位置编码的核心思想。根据苏剑林的研究,RoPE通过绝对位置编码的方式实现相对位置编码的效果。具体来说,它使用旋转矩阵对查询和键向量进行变换,使得它们的点积结果能够携带相对位置信息。这一步的关键在于如何构造旋转矩阵,并将位置信息融入进去。 接下来,我需要理清实现步骤。通常,位置编码会在注意力机制中的查询和键向量上应用。假设有一个查询向量q和键向量k,以及它们的位置m和n。RoPE会通过旋转矩阵R将位置信息编码进去,使得变换后的q和k的内积仅与它们的相对位置m-n有关。这里需要数学表达,比如使用复数域的旋转,或者二维空间中的旋转矩阵,扩展到高维的情况。 然后,我需要考虑如何将这种旋转操作扩展到多维空间。通常,RoPE会将向量的每一对元素视为一个二维向量,并对每一对应用旋转矩阵。例如,对于维度为d的向量,可以将其分成d/2个二维块,每个块独立旋转。这样,每个位置m对应的旋转角度θ_i会有不同的频率,类似于Transformer中的正弦位置编码,这里可能需要使用不同的频率基。 在实现细节方面,需要构造旋转矩阵R。对于每个位置m,旋转矩阵的参数由预定义的θ_i决定,这些θ_i通常是根据位置索引和维度计算得出的。例如,θ_i = 10000^{-2i/d},其中i是维度的索引。这样,每个维度对会有不同的旋转角度,从而捕获不同频率的位置信息。 另外,需要注意计算效率。由于旋转矩阵是稀疏的,可以通过对查询和键向量的元素进行重新排列,将复数乘法转换为实数运算,从而高效实现。例如,对于二维情况,旋转可以通过对向量的元素进行线性组合来实现,避免显式构造旋转矩阵,这样可以减少计算量,特别是在GPU上并行计算时。 接下来,可能需要举一个具体的例子,比如二维向量的旋转,说明如何将位置信息编码进去。例如,对于二维向量q = [q_0, q_1],旋转角度为mθ,则旋转后的向量为[q_0*cos(mθ) - q_1*sin(mθ), q_0*sin(mθ) + q_1*cos(mθ)]。扩展到多维,每个二维块都进行类似的旋转,位置m的不同会导致不同的旋转角度,从而在点积时体现出相对位置的信息。 在代码实现层面,可能需要展示如何将这一过程转化为具体的矩阵运算或者张量操作。例如,在PyTorch中,可以预先计算好cos(mθ)和sin(mθ)的值,然后对查询和键向量进行逐元素的操作,实现旋转。同时,需要考虑缓存这些旋转矩阵,以避免重复计算,提高效率。 此外,需要讨论RoPE的优点,比如能够保持相对位置信息的线性特性,适用于长序列,并且不会引入额外的可学习参数,这对于模型的稳定性和效率都是有利的。同时,RoPE在自注意力机制中的实现方式,使得模型能够更好地处理不同位置之间的依赖关系,提升性能。 用户可能还想知道RoPE与其他位置编码方法的比较,比如与绝对位置编码(如BERT中的位置嵌入)和相对位置编码(如Transformer-XL中的方法)的区别。这里可以简要说明,RoPE结合了两种的优势,通过旋转操作自然地融入了相对位置信息,同时保持了绝对位置的编码能力。 最后,可能需要提到应用场景和实际效果。RoPE已经被多个先进的模型采用,说明其有效性和实用性。例如,LLaMA模型使用RoPE来处理长文本,提升了模型在长距离依赖任务上的表现。 总结来说,回答需要结构清晰,从核心思想、数学推导、实现步骤、代码示例到优缺点和应用场景逐步展开,确保用户能够理解旋转位置编码的实现原理和具体方法。</think>旋转位置编码(Rotary Position Embedding,RoPE)是一种为Transformer模型注入位置信息的方法,通过旋转矩阵将绝对位置编码转化为相对位置感知的注意力计算。以下是其实现原理与步骤的详细解析: --- ### **一、核心思想** 1. **相对位置编码** 在自注意力中,查询向量$q_m$(位置$m$)与键向量$k_n$(位置$n$)的点积需携带二者相对位置$m-n$的信息。 2. **旋转操作** 对$q_m$和$k_n$分别施加旋转矩阵$R_m$和$R_n$,使得变换后的内积$\langle R_m q_m, R_n k_n \rangle$仅依赖$m-n$。 --- ### **二、数学推导** #### 1. **二维旋转** 对二维向量$v = [x, y]$,旋转角度$\theta$的旋转矩阵为: $$ R_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} $$ 旋转后向量为$R_{\theta}v = [x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta]$。 #### 2. **扩展到高维** 将$d$维向量分为$d/2$组二维向量,每组独立旋转。位置$m$对应第$i$组的旋转角度为: $$ \theta_i = m \cdot 10000^{-2i/d} $$ 其中$i$为维度索引,$10000^{-2i/d}$为频率基(类似Transformer的原始位置编码)。 --- ### **三、实现步骤** #### 1. **生成旋转矩阵** 对每个位置$m$,预计算旋转角度$\theta_i$,构造稀疏旋转矩阵$R_m$。 #### 2. **变换查询和键** 对查询$q_m$和键$k_n$分别应用旋转: $$ \tilde{q}_m = R_m q_m, \quad \tilde{k}_n = R_n k_n $$ #### 3. **计算注意力分数** 内积结果仅依赖相对位置$m-n$: $$ \langle \tilde{q}_m, \tilde{k}_n \rangle = \text{Re}[\sum_{i=0}^{d/2-1} q^{(i)} \overline{k^{(i)}} e^{i(m-n)\theta_i}] $$ 其中$q^{(i)}$和$k^{(i)}$为第$i$组复数形式的二维向量。 --- ### **四、代码实现(简化版)** 以PyTorch为例,高效实现无需显式构造矩阵: ```python def rotate_half(x): # 将后一半维度旋转 [x1, x2, ..., xd/2, xd/2+1, ..., xd] → [-x_{d/2+1}, ..., -xd, x1, ..., xd/2] x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, sin, cos): # q, k: [batch, seq_len, num_heads, dim] # cos/sin: [seq_len, dim] q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed ``` --- ### **五、优势与特性** 1. **相对位置感知**:内积结果仅依赖$m-n$,天然支持任意长度外推。 2. **无需学习参数**:旋转角度固定,减少过拟合风险。 3. **计算高效**:通过向量化操作实现,避免显式矩阵乘法。 --- ### **六、应用场景** - **长文本建模**:如LLaMA、GPT-NeoX等模型采用RoPE处理长序列。 - **多语言任务**:对位置敏感的翻译、生成任务效果显著。 通过旋转操作,RoPE将位置信息无缝融入注意力机制,成为现代Transformer架构的重要组件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值